Engineering Management and Systems Engineering (EMSE)

Explanation of Course Numbers

  • Courses in the 1000s are primarily introductory undergraduate courses
  • Those in the 2000–4000s are upper-division undergraduate courses that can also be taken for graduate credit with permission and additional work
  • Those in the 6000s and 8000s are for master’s, doctoral, and professional-level students
  • The 6000s are open to advanced undergraduate students with approval of the instructor and the dean or advising office

EMSE 1001. Introduction to Systems Engineering. 1 Credit.

Core concepts in systems engineering; processes of system decomposition and integration; upfront conceptual design, rapid prototyping, structured testing, balanced work, lean processes, and design for manufacturability. (Fall, Every Year).

EMSE 2705. Mathematics in Operations Research. 3 Credits.

Linear algebra topics relevant for optimization methods and models; systems of linear equations, Gaussian elimination, matrix algebra, vector spaces, determinants, linear programming, orthogonality and least squares; mathematical foundations of optimization theory; linear algebra, advanced calculus, convexity theory; geometrical interpretations and use of software. Prerequisite: MATH 2233. (Same as MATH 2184) (Spring, Every Year).

EMSE 2801. Fundamentals of Systems Engineering. 3 Credits.

The systems approach to designing, building, and operating complex engineering systems; requirements, functional decomposition, systems architecting, analysis of alternatives, project life cycle modeling, cost analysis, and technical performance measurement. Prerequisites: EMSE 1001; COMM 1040, or COMM 1041 or COMM 1042.   (Fall and spring).

EMSE 3701. Operations Research Methods. 3 Credits.

Mathematical properties and solution algorithms of optimization models used in operations research; linear programming: the simplex method, sensitivity analysis and duality theory; optimization models on graphs and networks: shortest path, longest path, network flow models; integer programming and discrete optimization; unconstrained and constrained nonlinear programming. Prerequisite: EMSE 2705 or permission of the instructor. (Spring, Every Year).

EMSE 3740W. Systems Thinking and Policy Modeling. 3 Credits.

Introduction to systems thinking and system dynamics approach to policy analysis; applications to business management and public policy. Key principles of systems; causal-loop and stock and flow models of business growth, technology adoption, and marketing. Includes a significant engagement in writing as a form of critical inquiry and scholarly expression to satisfy the WID requirement. Prerequisites: CSCI 1111 or CSCI 1121 or CSCI 1131.   (Fall and spring).

EMSE 3760. Discrete Systems Simulation. 3 Credits.

Simulation of discrete stochastic models. Simulation languages. Random-number/random-variate generation. Statistical design and analysis of experiments, terminating/nonterminating simulations; comparison of system designs. Input distributions, variance reduction, validation of models. Prerequisites: APSC 3115; CSCI 1121, CSCI 1041, or CSCI 1111; or permission of instructor.).

EMSE 3815. Requirements Analysis and Elicitation. 3 Credits.

The process of translating and decomposing systems engineering objectives into measurable and tractable requirements. Includes the discussion of how requirements analysis supports general processes and standards through elicitation methods, requirements decomposition, traceability matrices, and systems requirements specifications, and case studies that feature contemporary SE problems. Prerequisites: EMSE 2801.   (Spring).

EMSE 3820. Project Management for Engineering Systems. 3 Credits.

Introduction to project management concepts, processes, tools, and techniques; activity planning, budgeting, scheduling, analyzing risk, monitoring and controlling, evaluation and terminating; challenges of uncertainty, risk, and behavioral factors. Prerequisites: APSC 3115 and EMSE 3815.   (Spring).

EMSE 3850. Quantitative Models in Systems Engineering. 3 Credits.

Introduction to analytical models used in systems engineering to support decision making in business and government; applications to, for example, production planning, workforce scheduling, and network problems; formulating and solving models using spreadsheets. Prerequisite: EMSE 2705.   (Fall).

EMSE 3855W. Critical Infrastructure Systems. 3 Credits.

Topics in engineered infrastructure systems; asset management, environmental impact analysis, input–output life cycle analysis and inoperability modeling, infrastructure risk and reliability analysis, resilience and resistance to natural hazards or service disruptions, and development of infrastructure sustainability metrics. Includes a significant engagement in writing as a form of critical inquiry and scholarly expression to satisfy the WID requirement. Prerequisites: UW 1020.   (Spring).

EMSE 4190. Senior Project in Systems Engineering I. 3 Credits.

First phase of a two-semester senior project to identify real world problems and assess applicable systems engineering methodologies. Project focus varies, but may include Washington, D.C. area problems in public infrastructure or the private sector, including transportation, energy, environment, healthcare, telecommunications. Prerequisites: EMSE 3820 and EMSE 4765.   (Fall).

EMSE 4191. Senior Project in Systems Engineering II. 3 Credits.

Second phase of a two-semester senior project. Field experience and systems engineering project completion in a team context. Each small group confronts an actual problem, conducts an analysis and formulates a solution using systems engineering methods and models. Oral and written reports demonstrate project management, effective teamwork, and the mastering of applied systems engineering concepts. Prerequisites: EMSE 4190.   (Spring).

EMSE 4197. Special Topics. 0-3 Credits.

EMSE 4198. Research. 1-3 Credits.

Applied research and experimentation projects, as arranged. Prerequisite: junior or senior status.

EMSE 4410. Engineering Economic Analysis. 3 Credits.

How the concept of time value of money is used to make optimal engineering project investment choices in the face of competing alternatives; life-cycle financial analysis of engineering projects. Course provides foundation knowledge for the National Council of Examiners for Engineering and Surveying Fundamentals of Engineering examination. Prerequisites: ECON 1011 and MATH 1232.   (Fall and spring).

EMSE 4710. Applied Optimization Modeling. 3 Credits.

Formulation and analysis of linear, integer, and nonlinear optimization models of decision problems that arise in industry, business, and government; modeling techniques and applications; use of optimization software to formulate and solve models. Prerequisites: EMSE 3850. (Fall, Every Year).

EMSE 4755. Quality Control and Acceptance Sampling. 3 Credits.

Survey of techniques in quality control, including acceptance sampling, capability analysis, control charts, and design of experiments. Prerequisites: EMSE 4765 or permission of the instructor. (Fall, Every Year).

EMSE 4765. Data Analysis for Engineers and Scientists. 3 Credits.

Design of experiments and data collection. Regression, correlation, and prediction. Multivariate analysis, data pooling, and data compression. Model validation. Prerequisites: APSC 3115.

EMSE 4770. Techniques of Risk Analysis and Management. 3 Credits.

Topics and models in current risk analysis. Use of quantitative and qualitative methods in risk analysis. Modern applications of risk based planning and risk management. Restricted to Exceptions may be permitted with the permission of the instructor. Restricted to undergraduates majoring in Systems Engineering. Prerequisites: APSC 3115. (Spring).

EMSE 6001. The Management of Technical Organizations. 3 Credits.

The practice of management as applied within technical organizations. Includes history of the tradition and current effective practices, research findings, and case studies, with objectives of enhanced understanding of external and internal factors influencing organizational performance and leadership requirements. (Fall, spring, and summer).

EMSE 6005. Organizational Behavior for the Engineering Manager. 3 Credits.

The behavior of individuals and groups in the context of technical organizations, focusing on relationships and interactions within the organization’s operating activities. Individual and group development and motivation. Organizational structures and cultures.    (Fall and spring).

EMSE 6014. Management of Engineering Contracts. 3 Credits.

Study of the total contracting process (including initial budget preparation and justification, execution of a contract, and administration of the contract to completion) considered from the viewpoints of the industrial and government buyer and the seller of technical materials and services.    (Fall).

EMSE 6018. Engineering Law. 3 Credits.

Legal principles and procedures of interest to engineers. The American legal system, contracts and specifications, liability of professional engineers, product liability, agency relationships, patent and proprietary rights, special problems in research and development contracts.    (As required).

EMSE 6020. Decision Making with Uncertainty. 3 Credits.

Problem formulation. Concepts and techniques used in analyzing complex decision problems. Modeling decision problems using decision trees, probability models, multi-objective models and utility theory.    (Fall, spring, and summer).

EMSE 6023. Technology Issue Analysis. 3 Credits.

Contextual background and intellectual basis for addressing technology issues in the public and private sectors. Technology impact assessment, forecasting, and innovation; principles and practices of technology transfer as elements of a systematic approach to making technology decisions.    (Fall, odd years).

EMSE 6026. Technical Enterprises. 3 Credits.

Essential features of technology-based companies from the entrepreneur’s point of view. Team preparation of a simulated business plan for a technology-based company. Designed for those working in technical firms and for government personnel who depend on technical firms as suppliers.    (Spring, odd years).

EMSE 6030. Technological Forecasting and Management. 3 Credits.

Concepts and methods for understanding the dynamics of technological change. Issues in technology assessment, technology transfer, and strategic management of technology.    (Spring, even years).

EMSE 6035. Marketing of Technology. 3 Credits.

Analysis of industrial marketing process and functions, providing concepts and tools for engineering managers to market high technology products and services.    (Fall, odd years).

EMSE 6070. Management of Research and Development. 3 Credits.

Seminar on readings and classic and contemporary case studies in the strategic management of innovation and technology.    (Fall and spring).

EMSE 6099. Problems in Engineering Management and Systems Engineering. 3 Credits.

Capstone project providing the opportunity to apply concepts and tools previously studied to the solution of a real-world problem. Students work in small groups, on a problem proposed by students and approved by the instructor. Open only to master’s candidates in the department, preferably during the last semester of their program.

EMSE 6115. Uncertainty Analysis for Engineers. 3 Credits.

Basics of probability theory and statistics, with a focus on engineering applications, particularly in the realm of systems. Topics include simulation, uncertainty analysis, central limit theorem, systems examination and analysis, and application to systems design and management. Prerequisite: MATH 1231.

EMSE 6200. Policy Factors in Environmental and Energy Management. 3 Credits.

Exploration of the policy development process from several different but integrated perspectives. Focus on areas of environmental and energy management and use of current case studies to develop a framework of understanding to support decisions in a broad variety of management settings.    (Fall, odd years).

EMSE 6220. Environmental Management. 3 Credits.

Technical, economic, political, administrative, and social forces influencing the quality of the environment and the use of resources. Government and industrial programs to combat pollution of the air, soil, and water; existing and pending pertinent legislation; theoretical aspects of specific management problems.    (Fall).

EMSE 6225. Air Quality Management. 3 Credits.

The nature of critical local, regional, continental, and global problems associated with air pollution and the historical evolution of such problems. The complex regulatory and institutional framework controlling air quality management in the U.S. Current air quality management concepts and processes.    (Spring).

EMSE 6230. Hazardous Waste Management and Cleanup. 3 Credits.

Hazardous waste management and cleanup processes used in the U.S. and around the world. The roles of the relevant federal, state, and local government agencies; major hazardous waste laws and regulations. Planning, assessment, investigation, design, and construction phases of hazardous waste remediation projects.    (Spring, even years).

EMSE 6235. Water Quality Management. 3 Credits.

The nature of point and non-point sources of surface and ground water pollution and the statutory, regulatory, and institutional framework controlling water quality management activities in the U.S. Current approaches to water quality protection and enhancement. The role of engineered treatment processes in water quality management.    (Fall).

EMSE 6240. Environmental Hazard Management. 3 Credits.

Causes and effects of extreme natural and technological hazards. Organizational responsibilities, management approaches, directed technologies, and social factors related to environmental hazard assessment. Cultural, institutional, and technical capacities bearing on environmental disaster management, national and international risk reduction, and mitigation measures. (Spring, Odd Years).

EMSE 6245. Analytical Tools for Environmental Management. 3 Credits.

A survey course in environmental management, focusing on tools to assess the environment: quantitative risk assessment, environmental valuation methodologies, Congressional activities, and environmental laws. The regulatory process as it relates to environmental management. Risk assessment and modeling approaches to solving environmental problems.    (Spring, odd years).

EMSE 6260. Energy Management. 3 Credits.

Examination of the range of available energy resources, trends in their use, the programs and organizations that have developed and evolved to address problems associated with energy resource use.    (Spring).

EMSE 6285. Analytical Tools for Energy Management. 3 Credits.

Analytical tools needed to manage energy resources at the facility level. Energy technologies: instrumentation, measurement, and control. Energy auditing; conservation techniques, financial and economic analysis, and maintenance of energy budgets. Functions of an energy management office of a large organization.    (Fall, even years).

EMSE 6290. Climate Change: Policy, Impact. 3 Credits.

What is known and unknown in climate change science. Strategies and technologies for mitigation of and adaptation to the impact of climate change. International issues related to avoidance, challenges posed by as yet undefined effects, and responsibilities mandated by existing and proposed laws, executive orders, regulations, and court rulings.    (Fall, odd years).

EMSE 6291. Greenhouse Gas Measurement and Reporting. 3 Credits.

Study of existing methodologies and standards for measuring and reporting greenhouse gas (GHG) emissions with particular emphasis on accepted environmental accounting frameworks for the business sector and regulatory schemes. (Spring, even years).

EMSE 6292. Greenhouse Gas Mitigation. 3 Credits.

Conducting mitigation analyses, identifying, and analyzing projects to reduce greenhouse gas emissions with a focus on energy efficiency and renewable energy. Monitoring and reporting emission reductions using accepted methodologies. Use of carbon markets as a tool for cost-effective mitigation. (Fall, even years).

EMSE 6293. Greenhouse Gas Management Assurance and Information Systems Design. 3 Credits.

Design of information systems for management of greenhouse gas emissions. Assurance of greenhouse gas emissions assertions. (Spring, odd years).

EMSE 6295. Environmental Secuity. 3 Credits.

Overview of potential terrorist attack vectors on government-owned and private sector assets most directly tied to environmental health and safety. Homeland security requirements for environmental infrastructure, water supplies, energy sources, nuclear waste, and other programs vulnerable to targeting. Courses of action designed to prevent attacks.    (Fall).

EMSE 6300. Homeland Security: The National Challenge. 3 Credits.

The evolution of homeland security as a concept, legal framework, and redirection of national policies and priorities. Issues and problems of implementation. The terrorist threat and U.S. responses. Fundamental policy legislation and documents, such as national security strategies, homeland security decision directives, the NRF, and NIMS.    (Spring).

EMSE 6305. Crisis and Emergency Management. 3 Credits.

Defining crises, emergencies, and disasters. Developing crisis, business continuity, and incident management plans. The National Response Framework, National Incident Management System, organizing for response, managing the response organization, managing in a turbulent environment, crisis decision making and communication.    (Fall).

EMSE 6310. Information Technology in Crisis and Emergency Management. 3 Credits.

The role of information in crisis and response management; determining disaster and crisis information requirements; information technologies applied to crisis, disaster, and emergency management; causes and effects of information breakdowns during crises and disasters.

EMSE 6315. Management of Risk and Vulnerability for Hazards and Terrorism. 3 Credits.

Development of concepts required for risk-based planning and risk management. Objectives and methods for vulnerability assessment for natural disaster, technological hazards, and terrorist threats. Risk analysis, risk perception, risk communication, risk mitigation.    (Fall).

EMSE 6320. International Disaster Management. 3 Credits.

Guiding principles, key institutions, operational requirements, policy issues, and broad fundamentals associated with international disaster risk reduction and humanitarian response to natural and man-made disasters and complex emergencies.    (Fall).

EMSE 6325. Medical and Public Health Emergency Management. 3 Credits.

Medical and public health management issues encountered in crises, emergencies, and disasters for non-medical emergency managers. The spectrum of medical, public health, psychological and behavioral problems; incident management organization and processes that address these concerns and integrate medical and public health assets into the response.    (Spring).

EMSE 6330. Management of Terrorism Preparedness and Response. 3 Credits.

Terrorism, terrorist methods, and human/infrastructure vulnerability. Current preparedness and response programs. Mitigation, preparedness, and response requirements to manage mass terrorism incidents within the context of all-hazard emergency management. Case studies.    (Fall).

EMSE 6345. Disaster Recovery and Organizational Continuity. 3 Credits.

Disaster recovery planning and business continuity. Recovery of information and communication systems. The role of the private sector in mitigation and recovery. Public/private partnerships in community reconstruction and recovery.    (Spring).

EMSE 6350. Hazard Mitigation in Disaster Management. 3 Credits.

Hazard mitigation and its role in disaster management; analysis of past and current government and private-sector programs; examination of new approaches; structural versus nonstructural actions; mitigation of terrorist attacks.    (Fall).

EMSE 6410. Survey of Finance and Engineering Economics. 3 Credits.

Survey of material relevant to financial decision making for engineering activity. Includes traditional engineering economy topics; fundamentals of accounting; and financial planning, budgeting, and estimating applicable to the management of technical organizations.    (Fall, spring, and summer).

EMSE 6420. Uncertainty Analysis in Cost Engineering. 3 Credits.

Case studies in engineering economic analysis, capital budgeting, benefit–cost analysis, and other cost-related methodologies relevant to engineering managers. Prerequisites: EMSE 6410 or permission of instructor.).

EMSE 6430. Financial Management for Engineers. 3 Credits.

Financial analysis and concepts useful to engineers: sources and uses of funds, management of working capital, leverage, valuation, forecasting, investment decisions. Prerequisites: EMSE 6410.).

EMSE 6450. Quantitative Methods in Cost Engineering. 3 Credits.

Fitting exponential growth curves using cost data for forecasting; multiperiod capital budgeting using the analytical hierarchy process and optimization; and project network risk analysis. Case studies highlight theoretical complexities in solving problems. (Spring).

EMSE 6505. Knowledge Management I. 3 Credits.

The foundations of knowledge management, including cultural issues, technology applications, organizational concepts and processes, management aspects, and decision support systems. Case studies.    (Fall).

EMSE 6506. Knowledge Management II. 3 Credits.

A capstone course. Students work in teams, applying principles and processes of systems thinking, systems engineering, and integrative management in the design and implementation of a knowledge management system. Prerequisite: EMSE 6505.

EMSE 6510. Decision Support Systems and Models. 3 Credits.

Theory of decision making—a cognitive view. Modeling decision maker heuristics and processes. Design, implementation, and evaluation of state-of-the-art DSS (hands-on). Assess impact of behavioral, situational, and organizational variables.    (Fall).

EMSE 6537. Information Operations. 3 Credits.

National security concerns of governments and business about attacks across national borders and through physical protective mechanisms. The emergence of information technologies, from casual to full-fledged operational scale, to advance causes. Specific examples (e.g., attacks on Estonia, Palestinian conflict).    (On demand).

EMSE 6540. Management of Information and Systems Security. 3 Credits.

Development and management of effective security systems. Includes information, personnel, and physical security. Emphasis on risk analysis for information protection. (Summer and fall).

EMSE 6543. Managing the Protection of Information Assets and Systems. 3 Credits.

Advanced topics in protection of information assets and systems, including authentication, asset control, security models and kernels, physical security, personnel security, operational security, administrative security, security configuration management, and resource control. Prerequisite: EMSE 6540.

EMSE 6544. Auditing, Monitoring, and Intrusion Detection for Information Security Managers. 3 Credits.

Methods for detecting problems with unauthorized activity in information systems and management challenges associated with those activities. Prerequisite: EMSE 6540.

EMSE 6545. Internet and On-Line Law for Security Managers. 3 Credits.

Legal issues regarding control of behavior, information security mechanisms, and information systems engineering in connected enterprises. Specific laws and regulations governing Internet and on-line activity, jurisdictional challenges associated with networked computing, and business law in cyberspace.

EMSE 6546. Cybercrime for Info Secur Mgrs. 3 Credits.

Legal issues regarding information security actions related to and in response to criminal activity, including industrial espionage, back-hacking, cracking, and cyberterrorism. Transnational issues, cybercrime treaties and conventions, and cyberwar issues. Prerequisite: EMSE 6545.

EMSE 6549. Business and Competitive Intelligence. 3 Credits.

Discovery and analysis of competitive information from open-source intelligence. Sources and methods for data collection; legal issues and constraints; analysis processes; longitudinal aspects; inference.    (Spring).

EMSE 6570. Information Management and Information Systems. 3 Credits.

The use of information in organizations, the management of the information resource; the impact of information and communication technology.    (Spring).

EMSE 6573. Managing E-Commerce Technologies. 3 Credits.

Principles of good e-business management. Methods of conducting e-commerce—major opportunities, limitations, issues, and risks. Popular technologies for building e-businesses, security authentication, privacy, acceptable use policies, and legal limits.    (Fall, odd years).

EMSE 6579. Applied Data Mining in Engineering Management. 3 Credits.

Methods and techniques for discovering patterns and relationships in aggregated data, with practical focus on engineering problems. Tools, techniques, and methods explored in the context of their application. Prerequisite: EMSE 6020, EMSE 6586.

EMSE 6580. Information and Software Engineering. 3 Credits.

Introduction to analysis and design of information systems including requirements analysis, project management, and software architectures. Introduction to CASE tools. Prerequisite: EMSE 6570 or permission of instructor.

EMSE 6582. Object-Oriented Analysis and Design. 3 Credits.

The object-relationship model and the object-behavior model. Managing complexity with views and high-level modeling in object-oriented systems analysis. The concepts, the method, and applications, including object-based and object-oriented languages. Prerequisite: EMSE 6580.

EMSE 6584. Fundamentals of Artificial Intelligence. 3 Credits.

History of AI, expert systems, knowledge representation, search and control techniques, natural language processing, computer vision, computer speech, knowledge-based systems, and evidential reasoning. Hands-on experience with a knowledge-based shell.    (Spring).

EMSE 6586. Database Design and Database Management Systems. 3 Credits.

Concepts, strategies, and features of database design and management. Analysis, design, and implementation of database systems for micro and mainframe applications. Development of a microcomputer database system.     (Spring).

EMSE 6588. Software Project Development with CASE. 3 Credits.

Evaluation and selection of CASE tools, use of CASE tools in software design/project. Graphical user interface and re-engineering tools. Open only to master’s candidates in the department during the last semester of their program. Prerequisite: EMSE 6580.

EMSE 6589. Data Communications and Networks. 3 Credits.

Technical and managerial aspects of data communications, with emphasis on communication networks. Methodologies used in data communications, communication networks, and distributed data processing.    (On demand).

EMSE 6701. Operations Research Methods. 3 Credits.

Deterministic and stochastic methods. Optimization algorithms: Simplex method, Branch and Bound, combinatorial algorithms, heuristic methods. Optimization theory: convexity, duality, sensitivity analysis. Stochastic optimization: marginal analysis, Markov chains, Markov decision processes. Prerequisite: APSC 3115 or EMSE 6020, MATH 2233, or permission of instructor.

EMSE 6705. Mathematics in Operations Research. 3 Credits.

Mathematical foundations of optimization theory: linear algebra, advanced calculus, convexity theory. Geometrical interpretations and use of software. Prerequisite: MATH 2233.

EMSE 6710. Applied Optimization Modeling. 3 Credits.

Analysis of linear, integer, and nonlinear optimization models of decision problems that arise in industry, business, and government. Modeling techniques and applications; use of optimization software to solve models. Prerequisite: EMSE 6850 or permission of instructor.

EMSE 6715. Theory of Games. 3 Credits.

Mathematical models of conflict and cooperation with applications in economics, business, defense, transportation, and societal issues (voting schemes, fair division, auctions). Concept and computation of equilibrium in n-person games. Prerequisite: MATH 2233 or permission of instructor.

EMSE 6720. Topics in Optimization. 3 Credits.

Selected topics from the fields of linear programming, nonlinear programming, dynamic programming, heuristics, and constraint programming. May be repeated for credit provided the topic differs. Prerequisite: EMSE 6701 or permission of instructor.

EMSE 6730. Integer and Network Programming. 3 Credits.

Combinatorial optimization problems: algorithms and applications. Network problems: minimum spanning tree, shortest path, maximum flows, minimum cost flows, optimal matchings, routing problems. Complexity theory. Enumeration and cutting plane methods for solving integer programs. Prerequisite: EMSE 6701 or permission of instructor.

EMSE 6740. Systems Thinking and Policy Modeling I. 3 Credits.

Introduction to systems thinking and the system dynamics approach to policy analysis, with applications to business management and public policy. Causal-loop and stock and flow models of business growth, technology adoption, and marketing. Use of role-based games to explain key principles of systems. Use of simulation software to model problems and case studies.

EMSE 6745. Systems Thinking and Policy Modeling II. 3 Credits.

Case studies in dynamic policy analysis. Use of microcomputers in simulation. The class collectively models and simulates a social system to explore policy options. Prerequisite: EMSE 6740.

EMSE 6750. Stochastic Foundations of Operations Research. 3 Credits.

Topics in probability theory, stochastic processes, and statistical inference. Foundations of probability, conditional probability and expectation, Poisson processes, Markov chains, and Brownian motion. Prerequisite: APSC 3116 or permission of instructor.

EMSE 6755. Quality Control and Acceptance Sampling. 3 Credits.

Statistical approaches to quality assurance. Single and multivariate control charts, acceptance sampling by attributes and variables, process capability and design of experiments. Prerequisite: APSC 3115 or permission of instructor.

EMSE 6760. Discrete Systems Simulation. 3 Credits.

Simulation of discrete stochastic models. Simulation languages. Random-number/ random-variate generation. Statistical design and analysis of experiments, terminating/nonterminating simulations; comparison of system designs. Input distributions, variance reduction, validation of models. Same as STAT 4173. Prerequisite: APSC 3115; CSCI 1121, CSCI 1041, or CSCI 1111; or permission of instructor.

EMSE 6765. Data Analysis for Engineers and Scientists. 3 Credits.

Design of experiments and data collection. Regression, correlation, and prediction. Multivariate analysis, data pooling, data compression. Model validation. Prerequisite: APSC 3115.

EMSE 6770. Techniques of Risk Analysis and Management. 3 Credits.

Topics and models in current risk analysis; modern applications of risk-based planning and risk management; use of quantitative methods in risk analysis.    (Spring).

EMSE 6790. Logistics Planning. 3 Credits.

Quantitative methods in model building for logistics systems, including organization, procurement, transportation, inventory, maintenance, and their interrelationships. Stresses applications. Prerequisite: APSC 3115, MATH 1232.

EMSE 6801. Systems Engineering I. 3 Credits.

Systems approach to the architecting and engineering of large-scale systems; elements of systems engineering; methods and standards; computer tools that support systems and software engineering; trends and directions; the integrative nature of systems engineering.    (Fall, spring, and summer).

EMSE 6805. Systems Engineering II. 3 Credits.

Application of systems engineering tools to provide hands-on experience with essential elements of practice. Processes of requirements engineering, functional analysis and allocation, risk management, architecting; architectural heuristics, axiomatic design, analytical assessment of alternative architectures. Prerequisite: EMSE 6801.

EMSE 6807. Advanced Systems Engineering. 3 Credits.

Analysis of advanced systems engineering topics; system lifecycle models, INCOSE Vision 2025, requirements types and processes, architectural design processes and frameworks, DoDAF artifacts, enterprise architecture and enterprise systems engineering, complex adaptive systems (CAS), modeling languages and SysML, and Model Based Systems Engineering (MBSE). Applications of systems engineering tools and techniques. (Spring, Every Year).

EMSE 6810. Systems Analysis and Management. 3 Credits.

The systems or holistic approach as a methodology for making decisions and allocating resources. Analysis by means of objectives, alternatives, models, criteria, and feedback. Prerequisite: EMSE 6020 .

EMSE 6815. Requirements Engineering. 3 Credits.

Requirements in systems engineering, including requirement types, quality factors, elicitation methods, analysis, derivation of implicit requirements, management, traceability, verification, cross-requirement assessments, and validation. Focus on writing and managing quality requirements in complex systems. Prerequisite: EMSE 6801.

EMSE 6820. Program and Project Management. 3 Credits.

Problems in managing projects; project management as planning, organizing, directing, and monitoring; project and corporate organizations; duties and responsibilities; the project plan; schedule, cost, earned-value and situation analysis; leadership; team building; conflict management; meetings, presentations, and proposals.    (Fall).

EMSE 6825. Project Cost and Quality Management. 3 Credits.

Developing project cost and resource estimates during the planning stages. Monitoring, forecasting, and controlling cost throughout the project life cycle. Project quality planning, assurance, and control. Relationships among project scope, time, cost, quality, human resources, communications, procurement, and risk. Preparation for the Project Management Professional examination. Prerequisite: EMSE 6820.

EMSE 6830. Human Factors Engineering. 3 Credits.

Study of the human–machine interface applied to system design, job design, and technology management. Human sensory–motor, perceptual, and cognitive functions; task analysis and allocation; contextual aspects of human factors engineering. Modeling, design, and evaluation methodologies. Applications to user-centered industrial and information systems.    (As required).

EMSE 6840. Applied Enterprise Systems Engineering. 3 Credits.

Applications of systems engineering in the DoD, other parts of the federal government, and commercial sectors. Architectural frameworks and enterprise architecting concepts and practices, including JCIDS/DODAF, Federal Enterprise Architecture Framework, and Zachman™ Framework. Enterprise architecting and advanced modeling tools. Prerequisite: EMSE 6805.

EMSE 6850. Quantitative Models in Systems Engineering. 3 Credits.

Quantitative modeling techniques and their application to decision making in systems engineering. Linear, integer, and nonlinear optimization models. Stochastic models: inventory control, queuing systems, and regression analysis. Elements of Monte Carlo and discrete event system simulation. Prerequisite: APSC 3115 or EMSE 6020.

EMSE 6855. Reliability Analysis and Infrastructure Systems. 3 Credits.

Modeling basic variables and defining the limit–state surface. Computing the reliability index of an infrastructure system by approximating the limit–state surface—FORM and SORM. Modeling an infrastructure system. Reliability analysis using branch and bound, failure paths and failure modes, identification of dominant failure paths. Case studies.    (Fall).

EMSE 6991. Project for Professional Degree. 3 Credits.

Limited to students in the Applied Scientist or Engineer degree program.

EMSE 6992. Special Topics. 3 Credits.

Selected topics in engineering management and systems engineering, as arranged. May be repeated for credit. Prerequisite: permission of instructor.

EMSE 6995. Research. 1-12 Credits.

Basic or applied research in engineering management or systems engineering. Open to master’s degree candidates in the department. May be repeated for credit.

EMSE 6997. Advanced Topics in Operations Research. 3 Credits.

Advanced topics from the literature of operations research for analysis, presentation, and discussion. Reading assignments from professional journals selected by the instructor and the student. May be repeated for credit. Prerequisite: permission of instructor.

EMSE 6998. Thesis Research. 3 Credits.

EMSE 6999. Thesis Research. 3 Credits.

EMSE 8000. Research Formulation in Engineering Management and Systems Engineering. 3 Credits.

The first in a two-course sequence of doctoral seminars designed to give students their first exposure to the process of formulating and executing empirical research. Class format includes discussion, field experiments, data analysis, and theorizing. Study of core concepts in building theory from empirical data and classic works in technically-oriented management theory. Participants design and execute an research project. Restricted to Doctor of Engineering in the Field of Engineering Management degree candidates. (Spring, Every Year).

EMSE 8001. Research Methods for Engineering Management and Systems Engineering. 3 Credits.

Second in a two-course sequence introducing doctoral students to the fundamentals of research design and methods. Introduction to a range of research methods relevant to the study of engineering management and systems engineering, reading, writing, and critiquing the elements of a research proposal. Prerequisite: EMSE 8000. Restricted to Doctor of Engineering in the Field of Engineering Management degree candidates. (Fall).

EMSE 8010. Advanced Topics in Optimization. 3 Credits.

May be repeated for credit provided the topic differs. Prerequisite: EMSE 6701, EMSE 6705 or permission of instructor.

EMSE 8020. Advanced Stochastic Models in Operations Research. 3 Credits.

Applied probability models, including the Poisson process, continuous-time, denumerable-state Markov processes, renewal theory, semi-Markov regenerative processes. Applications to queues, inventories, and other operations research systems. Prerequisite: permission of instructor.

EMSE 8998. Adv Reading & Research. 1-12 Credits.

Limited to Doctor of Philosophy candidates. May be repeated for credit.

EMSE 8999. Dissertation Research. 1-12 Credits.

Limited to Doctor of Philosophy candidates. May be repeated for credit.