MECHANICAL AND AEROSPACE ENGINEERING

Mission Statement
The mission of the Department of Mechanical and Aerospace Engineering is to educate students to become professional mechanical and aerospace engineers who are confident in their understanding of science and technology and creative in the face of new challenges. Graduates of the mechanical engineering program have the analytical skill and thirst for lifelong learning that will expand career horizons. The program prepares students to conduct relevant research at the forefront of mechanical and aerospace engineering knowledge. Students learn through faculty mentoring and go on to practice mechanical engineering as skilled, responsible, and ethical professionals.

Educational Objectives
The mechanical engineering program provides an integrated curriculum designed to produce graduates who develop successful careers in mechanical engineering or in science and technology. Graduates will be prepared to accomplish the following objectives within a few years after graduation:

1. Practice mechanical engineering in industry or government, applying knowledge and skills acquired in the program to the design of engineering systems and devices, and the analysis and solution of engineering problems of complex scope; and/or
2. Succeed in advanced education, research and development, or other creative efforts in engineering, science, and technology; and/or
3. Apply engineering skills while pursuing careers in other professions, such as law, medicine, business, or public policy (this objective reflects the program's patent law and medical preparation options and will apply to a selected group of graduates);
4. Conduct themselves in a responsible and ethical manner, cognizant of the social, environmental, and economic impact of engineering and technology on society;
5. Embark upon a process of lifelong learning in their profession; and
6. Enter into leadership roles in technological development or local, national, or global economic development.

Student Outcomes
Students acquire knowledge of the following disciplines:

- Chemistry and calculus-based physics with depth in at least
- Advanced mathematics through multivariate calculus and differential equations; familiarity with statistics and linear algebra
- Thermal, fluid, and mechanical systems areas.

In addition, students gain the ability to fulfill the following professional responsibilities:

- Understand professional and ethical responsibility
- Apply knowledge of mathematics, science, and engineering, and familiarity with materials science, electrical circuits, and electromechanical control theory
- Design and conduct experiments, as well as analyze and interpret data
- Design a mechanical engineering system, component, or process to meet desired needs within realistic constraints
- Identify, formulate, and solve engineering problems
- Use the techniques, skills, and modern engineering tools necessary for engineering practice
- Use computer systems and knowledge of computer programming
- Apply computer software used in engineering practice, such as computer-aided engineering packages and mathematical software, to the solution of mechanical engineering problems
- Apply manufacturing techniques to realize mechanical engineering designs
- Communicate effectively both orally and graphically
- Write technical reports in a professional manner
- Function on multidisciplinary teams.

The program prepares graduates who have the broad education necessary to practice mechanical engineering, including the following fundamentals:

- An understanding of the impact of engineering solutions in a global, economic, environmental, and societal context.
- A recognition of the need for, and an ability to engage in life-long learning
- A knowledge of contemporary issues.

For more information contact the Department of Mechanical and Aerospace Engineering. (http://www.mae.seas.gwu.edu)

UNDERGRADUATE
Bachelor's programs
- Bachelor of Science with a major in mechanical engineering (http://bulletin.gwu.edu/engineering-applied-science/mechanical-aerospace-engineering/bs-mechanical-engineering)
- Bachelor of Science with a major in mechanical engineering, aerospace option (http://bulletin.gwu.edu/engineering-applied-science/mechanical-aerospace-engineering/bs-mechanical-engineering/aerospace)
- Bachelor of Science with a major in mechanical engineering, biomechanical option (http://bulletin.gwu.edu/engineering-applied-science/mechanical-aerospace-engineering/bs-mechanical-engineering/biomechanical)
• Bachelor of Science with a major in mechanical engineering, medical preparation option (http://bulletin.gwu.edu/engineering-applied-science/mechanical-aerospace-engineering/bs-mechanical-engineering/medical-preparation)
• Bachelor of Science with a major in mechanical engineering, patent law option (http://bulletin.gwu.edu/engineering-applied-science/mechanical-aerospace-engineering/bs-mechanical-engineering/patent-law)
• Bachelor of Science with a major in mechanical engineering, robotics option (http://bulletin.gwu.edu/engineering-applied-science/mechanical-aerospace-engineering/bs-mechanical-engineering/robotics)

GRADUATE

Master's program
• Master of Science in the field of mechanical and aerospace engineering (http://bulletin.gwu.edu/engineering-applied-science/mechanical-aerospace-engineering/ms)

Doctoral program
See the School of Engineering and Applied Science for programs leading to the doctoral degree.

CERTIFICATE
• Graduate certificate in the field of computer-integrated design in mechanical and aerospace engineering (http://bulletin.gwu.edu/engineering-applied-science/mechanical-aerospace-engineering/certificate-computer-integrated-design)

FACULTY

Professors E. Balaras, A.D. Cutler, D.S. Dolling, C.A. Garris, S.M. Hsu, M. Keidar, J.D.-Y. Lee, M.W. Plesniak (Chair), K. Sarker, Y.-L. Shen, M. Snyder

Associate Professors L. Barba, Y. Leng, S. Solares

Assistant Professors P.M. Bardet, P. Ben-Tzvi, S. LeBlanc, T. Lee, M. Leftwich, C. Liang, A.M. Wickenheiser, L. Zhang


COURSES

Explanation of Course Numbers
• Courses in the 1000s are primarily introductory undergraduate courses
• Those in the 2000-4000s are upper-division undergraduate courses that can also be taken for graduate credit with permission and additional work
• Those in the 6000s and 8000s are for master’s, doctoral, and professional-level students
• The 6000s are open to advanced undergraduate students with approval of the instructor and the dean or advising office

MAE 1001. Introduction to Mechanical and Aerospace Engineering. 1 Credit.
Careers in mechanical and aerospace engineering and the necessary academic program. Teamworking and problem-solving skills for solution of design problems. Analytical and design problems and correlations between academic skills and the mechanical and aerospace engineering professions. Basic aspects of engineering ethics.

MAE 1004. Engineering Drawing and Computer Graphics. 0-3 Credits.
Introduction to technical drawing, including use of instruments, lettering, geometric construction, sketching, orthographic projection, section view, dimensioning, tolerancing, and pictorial drawing. Introduction to computer graphics, including topics covered in manual drawing and computer-aided drafting.

MAE 2117. Engineering Computations. 3 Credits.

MAE 2124. Linear Systems Analysis for Robotics. 3 Credits.

MAE 2131. Thermodynamics. 3 Credits.
Fundamentals of equilibrium thermodynamics; Zeroth, First, and Second Laws. Work, heat, internal energy, enthalpy, thermodynamic potential functions; heat transfer mechanisms, phase diagrams, equations of state and property tables, power systems, refrigeration, heat pump systems. Reversible and irreversible processes, Carnot cycle, entropy, exergy. Prerequisite: PHYS 1021.

MAE 2170. History and Impact of the U.S. Patent System. 3 Credits.
Economic systems and emergence of the free market; role of the patent system in the industrial development of the United States; constitutional foundations; evolution of the U.S. patent system; landmark litigation; impact on future innovation; international aspects; the likely future of the patent system.
MAE 3120. Methods of Engineering Experimentation. 0-3 Credits.

MAE 3126. Fluid Mechanics I. 0-3 Credits.

MAE 3128. Biomechanics I. 3 Credits.
Mechanical analysis of biological systems. Characterization of living tissue. Applications of statics, solid mechanics, kinematics, and elementary dynamics to the human musculoskeletal system. May be taken for graduate credit with approval of department. Prerequisite: APSC 2057, CE 2220.

MAE 3134. Linear System Dynamics. 3 Credits.

MAE 3145. Orbital Mechanics and Spacecraft Dynamics. 3 Credits.
Coordinate systems and transformations, rocket equation, two-body problem, orbit transfers, orbit perturbations, attitude dynamics and stability of symmetric spacecraft, environmental and control torques. Prerequisite: MAE 2117, CE 2220.

MAE 3155. Aerodynamics. 3 Credits.
Subsonic and supersonic aerodynamics: potential flow, lift and form drag, viscous effects, compressible flow. Prerequisite: MAE 3126.

MAE 3162. Aerospace Structures. 3 Credits.
Basic structural theory of lightweight aerospace structures. Development of shear and bending moment diagrams and stresses. Analysis of typical monocoque structures. External airloads and their distribution. Mechanical properties of metal and advanced composite structures. Design of members in tension, bending or torsion, and design of webs in shear. Prerequisite: APSC 2057 and CE 2220. (Spring).

MAE 3166W. Materials Science and Engineering. 3 Credits.
Mechanical properties, plastic deformation dislocation theory, yielding, strengthening mechanisms, microstructure and properties, heat treatment of steel, composites, amorphous materials, viscoelastic deformation, creep, fracture, fatigue, fatigue crack propagation. Prerequisite or concurrent registration: CHEM 1111, PHYS 1022.

MAE 3167W. Mechanics of Materials Lab. 1 Credit.
Measurement of strains and study of failure resulting from applied forces in ductile, brittle, anisotropic, elastomeric, plastic, and composite materials. Tension, compression, bending, impact, and shear failures. Prerequisites: MAE 3166W. (Spring).

MAE 3171. Patent Law for Engineers. 3 Credits.
Types of patents; international patents; inventorship; prosecution process; basic references for patents; detailed structure of a patent; patentability requirements; reexamination and reissue; litigation; infringement and invalidity; copyrights, trademarks, and trade dress. May be taken for graduate credit with approval of department.

MAE 3184. Robotics Lab. 1 Credit.
Forward and inverse kinematics modeling of robots, control design, trajectory planning, and force rendering. Corequisite: MAE 3197.

MAE 3187. Heat Transfer. 3 Credits.

MAE 3190. Analysis and Synthesis of Mechanisms. 3 Credits.
Kinematics and dynamics of mechanisms. Displacements, velocities, and accelerations in linkage, cam, and gear systems by analytical, graphical, and computer methods. Synthesis of linkages to meet prescribed performance requirements. Prerequisite: APSC 2058. (Fall).

MAE 3191. Mechanical Design. 3 Credits.
Integration of knowledge of strength of materials in a design context. Stresses and deflections in engineering structures. Theories of failure. Introduction to the design of mechanical components, such as fasteners, shafts, springs. Introduction to the use of computers in mechanical engineering design. Prerequisite: CE 2220, MAE 2117.

MAE 3192. Manufacturing Processes and Systems. 3 Credits.

MAE 3195. Computer-Aided Engineering of Mechanical Systems. 3 Credits.
Presentation of the major elements of computer-aided engineering systems: interactive computer graphics, finite element analysis, and design optimization. Consideration of economics, safety, and reliability factors. Prerequisite: MAE 4193; concurrent registration: MAE 3196.
MAE 3196. Computer-Aided Engineering Laboratory. 1 Credit.
Instruction and hands-on applications of computer-aided engineering systems to the design, analysis, and optimization of mechanical engineering components and systems. Concurrent registration: MAE 3195.

MAE 3197. Robotic Systems Design and Applications. 3 Credits.

MAE 4129. Biomechanics II. 3 Credits.
Mechanical analysis of physiological fluid dynamics. Application of fluid flow analysis techniques to cardiovascular, pulmonary, respiratory, and phonatory flows. Introduction to biomedical devices that manipulate physiological flows. May be taken for graduate credit with approval of department. Prerequisite: MAE 3128.

MAE 4149. Thermal Systems Design. 3 Credits.
Completion of a thermal systems design project that requires integration of engineering science, economics, reliability, safety, ethics, professional responsibility, and social considerations. Development and use of design methodology, optimization, feasibility considerations, detailed system descriptions, and presentation of results. Prerequisite: MAE 3187.

MAE 4152W. Mechanical Engineering Laboratory. 3 Credits.
Project-oriented course. Simulates working environment of professional engineers. Projects are assigned in student’s areas of interest; student is expected to design and assemble own experiments. Extensive use of instrumentation and computing facilities. Project proposal, progress reports, final report, and periodic oral presentations required. (Spring).

MAE 4157. Aerodynamics Laboratory. 1 Credit.
Subsonic and supersonic wind tunnel experiments and simulations. Prerequisite: MAE 3155. (Fall).

MAE 4163. Airplane Performance. 3 Credits.
Lift and drag estimation methods. Airplane performance measures, such as range and endurance, turning flight, specific excess power and acceleration, takeoff and landing performance. Longitudinal and lateral-direction static and dynamic stability. Control surface effectiveness. Prerequisites: MAE 3134. (Fall).

MAE 4168. Intro. to Biomaterials. 3 Credits.
Fundamentals of materials science and engineering applied to artificial materials in the human body. Topics include biocompatibility, techniques to minimize corrosion or other degradation of implant materials, and the use of artificial materials in various tissues and organs. Prerequisite: Approval of department. Course not open to MAE students.

MAE 4172. Engineering Design and the Patent System. 3 Credits.
Design experience in group projects involving following precisely the teachings of a licensed patent; or avoiding infringement of a provided patent while offering a competitive alternative; or evaluating a provided patent in light of prior art or by attempting to design a competitive product. May be taken for graduate credit with approval of department. Prerequisite: MAE 3171 and senior status.

MAE 4182. Electromechanical Control System Design. 3 Credits.
Application of control theory to the design of electromechanical systems. Transducers, valves, and other control components. Mathematical models of open- and closed-loop electromechanical systems. Root locus and frequency response methods; application to the synthesis of feedback systems by both manual and computer-aided techniques. Prerequisite: MAE 2117, MAE 3134.

MAE 4183. Controls Lab. 1 Credit.
Modeling, control design, simulation, implementation, tuning, and operation of a control system. Corequisite: MAE 4182.

MAE 4193. Engineering Systems Design. 3 Credits.
Creative engineering design, problem definition, and concept generation. Design of journal and roller element bearings, fasteners and permanent joints, and springs. Design project incorporating design selection, and optimization. Project presentation using graphical and computer resources. Prerequisite: MAE 3191.

MAE 4194. Mechatronics Design. 3 Credits.

MAE 4195. Mechatronics Lab. 1 Credit.
Corequisite: MAE 4194.

MAE 4198. Research. 1-3 Credits.
Applied research and experimentation projects, as arranged. Prerequisite: junior or senior status.

MAE 4199. Student Design Project. 1-3 Credits.
Special student projects involving extensive design of various mechanical engineering systems. Examples include the solar car, mini-Baja, or other design competitions that typically are national in scope. May be taken for graduate credit by graduate students.
MAE 6201. Intro to Manufacturing. 3 Credits.

MAE 6203. Adv Experimentation Tech. 3 Credits.
Sensors; measurement of displacement, temperature, pressure and velocity. Optical methods. Signal conditioning. Computer data acquisition. Uncertainty analysis. Case studies of instrumentation systems such as hot-wire anemometers, laser-doppler anemometers, schlieren/shadowgraph and interferometers. Laboratory projects. (As arranged).

MAE 6204. Tissue Engineering. 3 Credits.

MAE 6207. Theory of Elasticity I. 3 Credits.
Introduction to Cartesian tensors; deformation, stress, constitutive relations for linear elasticity; formulation of boundary value problems, variational principles, torsion and bending of prismatical rods, plane problems. Prerequisite: approval of department. Same as CE 6207.

MAE 6210. Continuum Mechanics. 3 Credits.
Tensor analysis; fundamental concepts of continuum mechanics; kinematics of continuum; derivation of balance laws of mass, linear momentum, angular momentum, energy and entropy; axioms of constitutive theory; formulation of constitutive theories; Onsager’s principle; objectivity; representation theorem for isotropic functions; plasticity, including concepts of internal variables, yield surface, return mapping algorithm. Prerequisite: approval of department.

MAE 6220. Applied Computational Fluid Dynamics. 3 Credits.
Basic principles of fluid dynamics and aerodynamics. Finite difference and finite volume methods. Fluid flow and heat transfer analysis of thermo-fluid mechanical systems. Computational aerodynamics codes. Individual hands-on experience with a commercial CFD code such as FLUENT. Prerequisite: approval of department.

MAE 6221. Fluid Mechanics. 3 Credits.
Continuum, kinematics of fluids; stress and strain rate tensors; fundamental equations of viscous compressible flows. Irrotational flows; sources, sinks, doublets, and vortices. Laminar flow of viscous incompressible fluids; boundary-layer concept. Prerequisite: approval of department.

MAE 6222. Applied Aerodynamics. 3 Credits.
Introduction to practical and computational methods for solving two-dimensional and three-dimensional aerodynamics problems. Linear methods, nonlinear potential methods, coordinate transforms, and boundary-layer methods. Prerequisite: MAE 6221, MAE 6286.

MAE 6223. Turbomachinery. 3 Credits.
Turbine, compressor, and pump types and uses; dimensional analysis of turbomachines; cycle analysis of gas and steam turbines; energy interchange in fluid machinery; design, characteristics, and performance of turbines, compressors, and pumps; comparison of types of turbines, compressors, and pumps. Prerequisite: MAE 6221.

MAE 6224. Viscous Flow. 3 Credits.
Exact solutions of Navier-Stokes equations; the laminar boundary-layer theory. Reynolds stresses and turbulence; internal, boundary-layer, and mixing flows. Applications to heat and mass transfer and to reacting flows. Prerequisite: APSC 6213, MAE 6221.

MAE 6225. Computational Fluid Dynamics. 3 Credits.

MAE 6226. Aero/Hydrodynamics. 3 Credits.
Irrotational flows in two and three dimensions and irrotational flow theory; conformal mapping and applications. Helmholtz theorems and vorticity dynamics. Applications such as airfoil theory, finite wing theory, panel methods, instabilities, free surface flow. Prerequisite: MAE 6221.

MAE 6227. Aeroelasticity. 3 Credits.
Static and dynamic structural deformations; static aerelasticity (structural deformation, divergence, control effectiveness, and reversal); dynamic aerelasticity (flutter, response to gusts and turbulence); unsteady aerodynamics for 2-D wings; strip theory for 3-D lifting surfaces; piston and Newtonian-flow theories. Prerequisite: MAE 6221, MAE 6257.

MAE 6228. Compressible Flow. 3 Credits.

MAE 6229. Propulsion. 3 Credits.

MAE 6230. Space Propulsion. 3 Credits.
MAE 6231. Structure and Transformations in Materials. 3 Credits.
Structure of crystals, crystal binding, crystal defects, dislocations, solid solutions, phases, diffusion, phase transformations, deformation twinning, and martensite. Prerequisite: APSC 2130.

MAE 6232. Fracture Mechanics. 3 Credits.
Concepts, history, and recent developments of fracture mechanics. Singularity at the crack tip; solutions around crack tip; stress intensity factors; energy release rate; J-integral; direction of crack extension; Plasticity and slow crack growth; dynamic crack propagation; molecular dynamics simulation of fracture. Prerequisite: approval of department.

MAE 6233. Mechanics of Composite Materials. 3 Credits.

MAE 6234. Composite Materials. 3 Credits.

MAE 6235. Deformation and Failure of Materials. 3 Credits.
Elastic and plastic deformation, yield, dislocation theory, strengthening mechanisms, creep, polymers, fracture, transition temperature, microstructure, fatigue. (Spring, odd years).

MAE 6237. Applied Electrochemistry. 3 Credits.
Charged interfaces, electrochemical cells, corrosion thermodynamics, electrode kinetics, general corrosion, crevice corrosion, pitting, stress-corrosion cracking, corrosion protection, batteries and fuel cells, energy storage. May include current and potential distribution in electrochemical cells and scaling effects in modeling. Prerequisite: approval of department.

MAE 6238. Biomaterials. 3 Credits.
Applications of materials science and engineering to artificial materials in the human body with the objective of detailed understanding of synthetic materials and biopolymers. Biocompatibility and its consequences on tissue-implant interfaces. Design and development of new implant materials, drug delivery systems, and biosensors. Prerequisite: MAE 3166 or MAE 4168.

MAE 6239. Computational Nanosciences. 3 Credits.
Introduction to surface force measurements in nanosciences; continuum contact mechanics in nanoscale research; intermolecular forces; empirical potentials for transition metals; surface forces in liquids; large-scale atomic/molecular massively parallel simulator; force field development from quantum mechanical density-functional theory for organic/metal molecular systems. Prerequisite: approval of department.

MAE 6240. Kinematic Synthesis. 3 Credits.
Techniques for the analysis and synthesis of function, path, and motion generating mechanisms. Methods for the dimensional design of mechanisms. Computer-aided techniques for the optimal design of planar linkages. Review of recent developments and current research. Term project. Prerequisite: MAE 3190.

MAE 6241. Computer Models of Physical and Engineering Systems. 3 Credits.

MAE 6242. Advanced Mechanisms. 3 Credits.
Emphasis on spatial kinematics. Analysis and synthesis of mechanisms. Analytical techniques using matrices, dual numbers, quaternion algebra, finite and instantaneous screws, theory of envelopes. Applications to design of linkages, cams, gears. Use of digital computers in mechanism analysis and design. (Spring, even years).

MAE 6243. Advanced Mechanical Engineering Design. 3 Credits.
Design of mechanical engineering components and systems emphasizing computer-aided engineering (CAE), including interactive computer graphics, finite element analysis, and design optimization. Creation of a complete design on an engineering workstation. Prerequisite: approval of department.

MAE 6244. Computer-Integrated Engineering Design. 3 Credits.
Design of engineering components and systems on engineering workstations using I-DEAS. Interactive computer graphics, finite element analysis, computer-based design optimization, and other relevant computer-based tools. Students apply design concepts in a computer-aided engineering environment to a selected project. Prerequisite: approval of department.

MAE 6245. Robotic Systems. 3 Credits.
Classification, features, and applications of industrial robots. Spatial descriptions and transformations, forward and inverse kinematics. Jacobian matrix, velocities and static forces, manipulator dynamics and controls. Robot actuators, transmissions, sensors, end effectors, and programming. Prerequisite: MAE 4182.
MAE 6246. Electromechanical Control Systems. 3 Credits.
State-space representations of dynamic systems; dynamics of linear systems; controllability and observability; linear observers; compensator design by separation principle; linear-quadratic optimal control; Riccati equations; random processes; Kalman filter; applications of optimal stochastic control theory to robotics and earthquake engineering. Prerequisite: approval of department.

MAE 6247. Aircraft Design I. 3 Credits.
Conceptual design methods used in response to prescribed mission and performance requirements, alternate configuration concepts. Configuration general arrangement and empennage sizing. Estimation of aircraft size, weight, and balance; lift, thrust and drag; system level tradeoff and sensitivity studies. Prerequisite: Graduate Standing or MAE 4163. (Spring).

MAE 6249. Spacecraft Design. 3 Credits.
Computer-aided design of spacecraft and satellites to meet specific mission requirements. Environment, propulsion, structure, heat transfer, orbital mechanics, control considerations. Use of modern computer codes for design studies. Prerequisite: Graduate computer codes for design studies. Prerequisite: Graduate Standing or MAE 3192.

MAE 6251. Computer-Integrated Manufacturing. 3 Credits.
Automation techniques for processing metals, polymers, and composites. Use of sensing and process modeling in process control. Numerical control and robot applications and limitations. Integration, scheduling, and tool management in the computer-integrated factory. Quality control. Social and economic considerations in CIM. Prerequisite: MAE 3145. (Fall).

MAE 6252. Projects in Computer-Integrated Design and Manufacturing. 3 Credits.
Applications of the concepts of computer-integrated manufacturing to group projects, culminating in written and oral presentations. Robot programming, vision-guided assembly, force sensing, fixtureing, and end-effector design for practical applications. Factory simulation, part scheduling, and NC program-verification algorithms. Prerequisite: MAE 6251.

MAE 6253. Aircraft Structures. 3 Credits.
Statics of thin-walled beams and panels, force interplay between stiffeners and skin in the analysis and design of stiffened thin-walled structures. Strength and stiffness of locally buckled stiffened structures. Design considerations. Critical evaluation of various design procedures. Prerequisite: approval of department.

MAE 6254. Applied Nonlinear Control. 3 Credits.
Dynamic characteristics of nonlinear systems. State stability and input-output stability. Lyapunov stability theory and invariance principle. Nonlinear control systems, including feedback linearization, back-stepping, sliding mode control, and passivity-based design. Applications to robotics, aircraft, and spacecraft control systems. Geometric controls and hybrid systems. Prerequisite: approval of department.

MAE 6255. Plasma Engineering in Aerospace and Nanotechnology. 3 Credits.
Plasma fundamentals, electromagnetic waves in plasma, plasma-wall interactions, modeling and experimental techniques in plasmas, electrical discharge, plasma propulsion, plasma-based nanotechnology. Prerequisite: MAE 3126.

MAE 6257. Theory of Vibration. 3 Credits.
Damped and undamped natural vibration, response of single- and multiple-degrees-of-freedom systems to steady-state and transient excitations, modal analysis, nonproportional damping and complex modes, variation formulation of equations of motion, discretization of structural systems for vibrational analysis. Prerequisite: approval of department.

MAE 6258. Advanced Vibration Analysis and Control. 3 Credits.
Passive and active vibration control of discrete and continuous systems, dynamic vibration absorbers, random vibrations, failure analysis, modal analysis, nonlinear vibrations. Prerequisites: MAE 3134 and MAE 4182 or graduate standing. (Spring).

MAE 6260. Nanomechanics. 3 Credits.
Introduction to crystallography; interatomic potentials; phonon dispersion relations; molecular dynamics simulation; Nose-Hoover thermostat; coarse grained non-equilibrium molecular dynamics; multiple length/time scale theory of multi-physics; microcontinuum field theories; applications to nano materials/structures. Prerequisite: approval of department.

MAE 6261. Air Pollution. 3 Credits.
Introductory course on the generation, monitoring, and control of air pollution. Atmospheric pollutants; current levels and health problems. Combustion chemistry and mixing. Photochemical processes; smog and measurements. Atmospheric dispersion; inversion and acid rain. Prerequisite: approval of department.

MAE 6262. Energy Systems Analysis I. 3 Credits.
Analysis of energy resources and conversion devices. Statistical data analysis, forecasting, I/O, and net energy analyses, mathematical modeling. Prerequisite: approval of department.

MAE 6263. Advances in Energy Engineering. 3 Credits.
Review of thermodynamics, heat transfer, fluid dynamics, and materials technology used in the energy industries. New energy-efficient technologies in transportation and buildings; renewable energy (wind, solar, and biomass). Climate change and sustainability issues, such as carbon capture, cap and trade, carbon sequestration.

MAE 6270. Theoretical Acoustics. 3 Credits.
Basic acoustic theory in stationary and uniformly moving media; waves in infinite space; sound transmission through interfaces; sound radiation from simple solid boundaries, source and dipole fields; propagation in ducts and enclosures; elements of classical absorption of sound. Prerequisite: APSC 6213, MAE 6221.
MAE 6271. Time Series Analysis. 3 Credits.
Harmonic analysis of random signals; auto- and cross-correlations and spectra; coherence; modern techniques for spectral estimation, including fast Fourier transform, maximum entropy, and maximum likelihood; bias and variability; randomly sampled data; digital filtering; applications. Prerequisite: approval of department.

MAE 6274. Dynamics/Cntrl of Spacecraft. 3 Credits.

MAE 6275. Stability and Control of Aircraft. 3 Credits.
Derivation of equations of motion, Euler transformations and direction cosines, stability derivatives and linearization of equations of motion, stability of linear systems with application to longitudinal and lateral dynamics, Laplace transform techniques, and frequency-response analysis. Prerequisite: approval of department.

MAE 6276. Mechanics of Space Flight. 3 Credits.
Coordinate and time systems. Newton’s laws; 2-, 3-, and n-body problems, Lagrange points, gravity-assisted trajectories, variation of parameters and orbit perturbations, non-central gravity effects, drag, sun-synchronous, and formation orbits. Numerical applications using MatLab. Prerequisite: approval of department.

MAE 6277. Spacecraft Attitude Control. 3 Credits.

MAE 6280. Thermodynamics. 3 Credits.
Review of First and Second Laws of Thermodynamics and combining the two through exergy; entropy generation minimization and applications. Single phase systems, exergy analyses, multiphase systems, phase diagrams and the corresponding states principle. Prerequisite: approval of department.

MAE 6281. Advanced Thermodynamics. 3 Credits.
Development of classical and quantum statistical mechanics, including Maxwell-Boltzman distributions and microscopic origins of entropy and other thermodynamic variables. Partition functions and micro- and grand-canonical ensembles; Fermi-Dirac, Bose-Einstein, and intermediate statistics. Einstein and Debye models of solids. Prerequisite: MAE 6280.

MAE 6282. Convective Heat/Mass Transfer. 3 Credits.

MAE 6283. Radiative Heat Transfer. 3 Credits.
Basic concepts of heat transfer by thermal radiation starting from Planck’s equation for blackbody radiation. Realistic engineering problems are addressed, some involving radiative heat transfer with a variety of surfaces, geometries, and enclosures. Radiative heat flow combined with conduction and convection boundaries. Prerequisite: approval of department.

MAE 6284. Combustion. 3 Credits.

MAE 6286. Numerical Solution Techniques in Mechanical and Aerospace Engineering. 3 Credits.
Development of finite difference and finite element techniques for solving elliptic, parabolic, and hyperbolic partial differential equations. Prerequisite: APSC 6213.

MAE 6287. Advanced Finite Element Analysis. 3 Credits.
Review of variational formulation of the finite element method. Finite element analysis of large-strain thermomechanics. Applications to static and dynamic problems in finite elasticity, Fung elasticity (biomechanics), nonlocal theory, active stress in living biological tissues, biological growth, and large-strain plasticity. Recent developments in finite element methods. Same as CE 8330. Prerequisite: approval of department.

MAE 6289. Special Topics in Mechanical Engineering. 3 Credits.
Selected subjects of current interest. Arranged by consultation between department faculty and students. Typical topics include tribology, power systems design, solar heating systems, HVAC, and plasticity theory. Prerequisite: approval of department.
MAE 6292. Special Topics in Aerospace Engineering. 3 Credits.
Selected subjects of current interest. Arranged by consultation between department faculty and students. Typical topics include environmental noise control, aeroacoustics, hypersonic flow, and flight vehicle aerodynamics. May be repeated for credit. Prerequisite: approval of department.

MAE 6298. Research. 1-6 Credits.
Basic research projects as arranged. May be repeated for credit.

MAE 6998. MS Thesis Research. 3 Credits.

MAE 6999. MS Thesis Research. 3 Credits.

MAE 8350. Advanced Topics in Materials Science. 3 Credits.
Topics such as surface science that are of current research interest. Selected after consultation between department faculty and students. Prerequisite: approval of department.

MAE 8351. Advanced Topics in Mechanical Engineering. 3 Credits.
Topics such as advanced analytical mechanics, advanced mechanics of continua, and advanced theory of elasticity that are of current research interest. Selected after consultation between department faculty and students. Prerequisite: approval of department.

MAE 8352. Advanced Topics in Aerospace Engineering. 3 Credits.
Topics such as nonsteady flow, physical gas dynamics, turbulence, and nonlinear wave propagation that are of current research interest. Selected after consultation between department faculty and students. Prerequisite: approval of department.

MAE 8998. Advanced Reading & Research. 1-12 Credits.
Limited to students preparing for the Doctor of Philosophy qualifying examination. May be repeated for credit.

MAE 8999. Dissertation Research. 1-12 Credits.
Limited to Doctor of Philosophy candidates. May be repeated for credit.