STATISTICS (STAT)

Explanation of Course Numbers
- Courses in the 1000s are primarily introductory undergraduate courses.
- Those in the 2000s to 4000s are upper-division undergraduate courses that can also be taken for graduate credit with permission and additional work.
- Those in the 6000s and 8000s are for master's, doctoral, and professional-level students.
- The 6000s are open to advanced undergraduate students with approval of the instructor and the dean or advising office.

STAT 1000. Dean's Seminar. 3 Credits.
The Dean's Seminars provide Columbian College first-year students focused scholarship on specific intellectual challenges. Topics vary by semester; see department for more details.

STAT 1051. Introduction to Business and Economic Statistics. 3 Credits.
Lecture (3 hours), laboratory (1 hour). Frequency distributions, descriptive measures, probability, probability distributions, sampling, estimation, tests of hypotheses, regression and correlation, with applications to business.

STAT 1053. Introduction to Statistics in Social Science. 3 Credits.
Lecture (3 hours), laboratory (1 hour). Frequency distributions, descriptive measures, probability, sampling, estimation, tests of hypotheses, regression and correlation, with applications to social sciences.

STAT 1111. Business and Economic Statistics I. 3 Credits.
Descriptive statistics, graphical methods, probability, special distributions, random variables, sampling, estimation and confidence intervals, hypothesis testing, correlation and regression.

STAT 1127. Statistics for the Biological Sciences. 3 Credits.
Introduction to statistical techniques and reasoning applicable to the biomedical and related sciences. Properties of basic probability functions: binomial, Poisson, and normal. Data analysis, inference, and experimental design.

STAT 1129. Introduction to Computing. 3 Credits.
Introduction to elements of computer programming and problem-solving using a computer programming language. Hands-on experience is acquired through computer programming projects, including some simple statistical applications.

STAT 2000. Sophomore Colloquium. 3 Credits.
Sophomore colloquia are small, seminar-type classes that deeply engage CCAS second-year students in a discipline, focus on a narrow issue of high interest and impact, and require independent research projects. May be repeated provided topic differs. Consult the Schedule of Classes for more details. Restricted to CCAS sophomores.

STAT 2112. Business and Economic Statistics II. 3 Credits.
Continuation of STAT 1111. Emphasis on techniques of regression, chi-square, nonparametric inference, index numbers, time series, decision analysis, and other topics relevant to economics and business. Prerequisite: STAT 1111.

STAT 2118. Regression Analysis. 3 Credits.
Lecture (3 hours), laboratory (1 hour). Simple and multiple linear regression, partial correlation, residual analysis, stepwise model building, multicollinearity and diagnostic methods, indicator variables. Prerequisites: STAT 1111 or equivalent.

STAT 2123. Introduction to Econometrics. 3 Credits.
Same as Econ 2123.

STAT 2183. Intermediate Statistics Lab/Packages. 3 Credits.
Application of program packages (e.g., SAS, SPSS) to the solution of one-, two- and k-sample parametric and nonparametric statistical problems. Basic concepts in data preparation, modification, analysis and interpretation of results. Prerequisites: An introductory statistics course.

STAT 2183W. Intermediate Statistical Laboratory: Statistical Computing Packages. 3 Credits.
Application of program packages (e.g., SAS, SPSS) to the solution of one-, two- and k-sample parametric and nonparametric statistical problems. Basic concepts in data preparation, modification, analysis and interpretation of results. Includes a significant engagement in writing as a form of critical inquiry and scholarly expression to satisfy the WID requirement. Prerequisites: An introductory statistics course.

STAT 3119. Analysis of Variance. 3 Credits.
Lecture (3 hours), laboratory (1 hour). Introduction to the design of experiments and analysis of variance; randomized block, factorial, Latin square designs, and analysis of covariance. Prerequisite: STAT 2118.

STAT 3187. Introduction to Sampling. 3 Credits.
Problems of sampling and sample design. Simple random, stratified, systematic, cluster, and multistate designs; control of sampling and non-sampling errors. Prerequisite: STAT 1051.

STAT 3187W. Introduction to Sampling. 3 Credits.
Problems of sampling and sample design. Simple random, stratified, systematic, cluster, and multistate designs; control of sampling and non-sampling errors. Includes a significant engagement in writing as a form of critical inquiry and scholarly expression to satisfy the WID requirement. Prerequisite: STAT 1051.
STAT 4157. Introduction to Mathematical Statistics I. 3 Credits.
Basic concepts of probability theory, including random variables, independence, distribution theory, and sampling theory. Prerequisite: MATH 1232.

STAT 4158. Introduction to Mathematical Statistics II. 3 Credits.
Continuation of STAT 4157. Inference procedures, including estimation, hypothesis testing, regression analysis, and experimental design. Prerequisite: MATH 1232.

STAT 4181. Applied Time Series Analysis. 3 Credits.
Autoregressive integrated moving average (ARIMA) modeling and forecasting of univariate time series. Estimation of spectral density functions, white noise tests, and tests for periodicities. Theory and applications using statistical software. Prerequisites: STAT 4157 and STAT 4158 or STAT 2118.

STAT 4188. Nonparametric Statistics Inference. 3 Credits.
Statistical inference when the form of the underlying distribution is not fully specified. Nonparametric procedures for estimation and testing hypotheses. An introduction to robust procedures. Prerequisite: STAT 1051.

STAT 4189. Mathematical Probability and Applications I. 3 Credits.
Probability theory, including combinatorial analysis, conditional probability, and stochastic independence. Random variables and their distributions; laws of large numbers and central limit theorem. Application of concepts to elementary stochastic processes (coin-tossing sequences, branching processes, Markov chains). Prerequisite: MATH 1232.

STAT 4190. Mathematical Probability and Applications II. 3 Credits.
Continuation of STAT 4189. Probability theory, including combinatorial analysis, conditional probability, and stochastic independence. Random variables and their distributions; laws of large numbers and central limit theorem. Application of concepts to elementary stochastic processes (coin-tossing sequences, branching processes, Markov chains). Prerequisite: MATH 1232.

STAT 4195. Reading and Research. 1-12 Credits.
May be repeated once for credit. Permission of the department chair required prior to enrollment.

STAT 4197. Fundamentals of SAS Programming for Data Management. 3 Credits.
Fundamentals of Statistical Analysis System (SAS) software for data management, statistical analysis, and report writing. Data modification, programming, file handling, and macro writing. Recommended background: An introductory statistics course and knowledge of computer programming.

STAT 6104. Statistics in Management, Administration, and Policy Studies. 3 Credits.
Introductory study of statistical techniques for research problems. For graduate students in fields other than statistics who have no previous statistics training. May not be taken by graduate students in statistics.

STAT 6197. Fundamentals of SAS Programming for Data Management. 3 Credits.
Fundamentals of Statistical Analysis System (SAS) software for data management, statistical analysis, and report writing. Data modification, programming, file handling, and macro writing. Recommended background: An introductory statistics course and knowledge of computer programming.

STAT 6201. Mathematical Statistics I. 3 Credits.
Basic Probability theory, Random variables and transformations, Common families of distribution, Conditional expectations and distributions, Bivariate and Multivariate distributions and transformations, Sampling distributions. Prerequisites: MATH 2233 and MATH 2184.

STAT 6202. Mathematical Statistics II. 3 Credits.
Continuation of STAT 6201. Order Statistics, Convergence concepts, Sufficient and Complete statistics, Likelihood Principle, Point and Interval Estimation, Hypothesis Testing, Bayesian Tests and Intervals. Prerequisites: MATH 2233, MATH 2184 and STAT 6201.

STAT 6207. Methods of Statistical Computing I. 3 Credits.
Error analysis, computational aspects of linear models, sweep operator, random number generation, simulation, resampling. Optimization, numerical integration (Gaussian quadrature, Simpson’s rule); E-M algorithm. Prerequisites: STAT 2118, STAT 4157 and STAT 4158; and MATH 2184 and STAT 6201.

STAT 6208. Methods of Statistical Computing II. 3 Credits.
Numerical linear algebra, matrix decomposition and eigenvalue problems. Smoothing and density estimation. Graphics, interactive and dynamic techniques for data display. Object-oriented programming. Prerequisites: STAT 2118, STAT 4157 and STAT 4158; and MATH 2184; and knowledge of a programming language.

STAT 6210. Data Analysis. 3 Credits.
Review of statistical principles of data analysis, using computerized statistical procedures. Multiple regression and the general linear model, analysis of contingency tables and categorical data, logistic regression for qualitative responses. Prerequisites: STAT 2118 or STAT 4157 or STAT 6201; and STAT 2183.
STAT 6213. Intermediate Probability and Stochastic Processes. 3 Credits.
Discrete and continuous random variables and their distributions, conditional distributions and conditional expectation, generating functions and their applications, convergence of random variables; introduction to Brownian motion, homogeneous and nonhomogeneous Poisson processes and martingales. Prerequisites: STAT 6201 and STAT 6202.

STAT 6214. Applied Linear Models. 3 Credits.
Introduction to regression techniques for discrete and continuous response variables. The course includes a computing component using SAS and S. Prerequisite: MATH 2233 and MATH 2184.

STAT 6215. Applied Multivariate Analysis I. 3 Credits.
Statistical analysis of several variables, possibly dependent, following a joint normal distribution. Matrix algebra and random vectors, multivariate sample geometry, multivariate normal distribution, inferences about a mean vector, and comparisons of several population means. Applications of multivariate techniques to the analysis of data from the behavioral, social, medical, and physical sciences. Prerequisites: STAT 3119, STAT 4157 and STAT 4158; and MATH 2184.

STAT 6216. Applied Multivariate Analysis II. 3 Credits.
Continuation of STAT 6215. Statistical analysis of random vectors, following a multivariate normal distribution. Multivariate linear regression models, principal components, factor analysis, inference for structured covariance matrices, canonical correlations, discrimination and classification, clustering and distance methods. Applications of multivariate techniques to the analysis of data from the behavioral, social, medical, and physical sciences. Prerequisites: STAT 3119, STAT 4157 and STAT 4158; and MATH 2184.

STAT 6217. Design of Experiments. 3 Credits.
Design and analysis of single- and multiple-factor experiments. Includes block designs, repeated measures, factorial and fractional factorial experiments, response surface experimentation. Prerequisites: STAT 4157 and STAT 4158; and MATH 2184.

STAT 6218. Linear Models. 3 Credits.
Theory of the general linear parametric model. Includes least squares estimation, multiple comparisons procedures, variance components estimation. Prerequisites: STAT 6201, STAT 6202, STAT 2118 and MATH 2184.

STAT 6223. Bayesian Statistics: Theory and Applications. 3 Credits.
An overview of Bayesian statistics, including its foundational issues, decision under uncertainty, linear models, expert opinion, and computational issues. Prerequisites: STAT 6201 and STAT 6202.

STAT 6225. Longitudinal Data Analysis. 3 Credits.
Introduction to the statistical models, estimation methods, and inferences for the analysis of longitudinal data; modern methods for the analysis of repeated measures as well as parametric and nonparametric regression models for longitudinal analysis. Restricted to master of science and doctoral program candidates. Prerequisites: Stat 2118, Stat 6201 and Stat 6202.

STAT 6227. Survival Analysis. 3 Credits.
Parametric and nonparametric methods for the analysis of events observed in time (survival data), including Kaplan-Meier estimate of survival functions, logrank and generalized Wilcoxon tests, the Cox proportional hazards model and an introduction to counting processes. Prerequisites: STAT 6201 and STAT 6202; or permission of the instructor.

STAT 6231. Contingency Table Analysis. 3 Credits.
A study of the theoretical bases underlying the analysis of categorical data. Measures and tests of association; Mantel-Haenszel procedure; weighted least squares and maximum likelihood estimators in linear models; estimating equations; logistic regression; loglinear models. Prerequisites: STAT 6201 or STAT 6202 or STAT 2118 or STAT 6214.

STAT 6233. Questionnaire Design. 3 Credits.
Questionnaire development from the perspective of cognitive techniques. Questionnaire issues range from choosing the mode of data collection (mail, telephone, or in-person) to selecting the respondent to the differences between asking attitude and factual questions. Pretesting the instrument chosen.

STAT 6234. Intermediate Statistical Laboratory: Statistical Computing Packages. 3 Credits.
Application of program packages (e.g., SAS, SPSS) to the solution of one-, two- and k-sample parametric and nonparametric statistical problems. Basic concepts in data preparation, modification, analysis and interpretation of results. This course is specifically designed for SDDA program. Prerequisites: AN introductory statistics course.

STAT 6236. Applied Sampling Techniques. 3 Credits.
Problems of sampling and sample design. Simple random, stratified, systematic, cluster, and multistate designs; control of sampling and non-sampling errors. Prerequisite: STAT 1051.

STAT 6238. Survey Management. 3 Credits.
Tools used in the management of a survey operation from the initial customer contacts through training, fieldwork, data processing, data analysis, report writing, and presentation of results. Issues in budgeting, staffing, and scheduling, with emphasis on quality management.
STAT 6240. Statistical Data Mining. 3 Credits.
Introduction to basic data mining concepts and techniques for discovering interesting patterns hidden in large-scale data sets, focusing on issues relating to effectiveness and efficiency. Students are expected to be familiar with R programming. Restricted to statistics majors or with the permission of the instructor. Prerequisites: STAT 6201, STAT 6202, and STAT 6214 or equivalents. Recommended background: coursework in mathematical statistics, applied linear models, and multivariate statistics.

STAT 6242. Modern Regression Analysis. 3 Credits.
Methodology, major software tools and applications of modern nonparametric methods. Regularized regression: shrinkage, ridge and lasso; nonparametric regression: kernels and splines; nonparametric classification: K-Nearest Neighbors and Decision Trees; resampling methods: bootstrap, boosting and bagging. Prerequisites: STAT 6201 or STAT 6202 or STAT 6214 or STAT 6218.

STAT 6245. Statistical Consulting. 3 Credits.
This course focuses on the following themes: (i) understanding the statistical consulting process; (ii) developing effective verbal and written communication skills; (iii) comprehending consulting environments in different industries; and (iv) obtaining consulting experience through case studies. Prerequisites: STAT 6201, STAT 6202, STAT 6214 and STAT 6215. Recommended background: second-year status in the graduate statistics or biostatistics program.

STAT 6252. Statistical Methods in Bioinformatics and Computational Biology. 3 Credits.

STAT 6253. Legal Statistics. 3 Credits.

STAT 6254. Statistical Genetics. 3 Credits.
Theories of population genetics and Mendelian genetics, Hardy-Weinberg equilibrium and linkage disequilibrium, statistical software (R or SAS) for linkage analysis and association analysis, research in statistical genetics. Prerequisites: STAT 6201 and STAT 6202.

STAT 6287. Sample Surveys. 3 Credits.
Application of statistical theory to the sampling of finite populations. Simple, stratified, cluster, double and subsampling. Special topics, including super-populations and randomized response. Prerequisites: STAT 4157 and STAT 4158.

STAT 6289. Topics in Statistics. 3 Credits.
Topics vary by semester. May be repeated for credit provided the topic differs. See department for more details.

STAT 6290. Principles of Demography. 3 Credits.
Introduction to basic demographic perspectives and data; methods for analysis of population size, distribution, and composition; determinants and consequences of population trends. Departmental prerequisite waived. Same as ECON 6290.

STAT 6291. Methods of Demographic Analysis. 3 Credits.
Basic methods for analysis of mortality, natality, and migration; population estimates and projections; estimation of demographic measures from incomplete data. Departmental prerequisite waived. Same as ECON 6291.

STAT 6295. Reading and Research. 3 Credits.
May be repeated once for credit.

STAT 6298. Seminar: Special Topics. 3 Credits.

STAT 6998. Thesis Research. 3 Credits.

STAT 6999. Thesis Research. 3 Credits.

STAT 8226. Advanced Biostatistical Methods. 3 Credits.
Statistical methods for the analysis of longitudinal data: nonparametric, fixed effects, mixed effects, generalized estimating equations. Methods for the analysis of emerging data: group sequential analysis, Brownian motion, Bayesian methods, and stochastic curtailment. Other advanced topics of current research in biostatistics. Prerequisites: STAT 6201 and STAT 6202; or permission of the instructor.

STAT 8257. Probability. 3 Credits.
Probabilistic foundations of statistics, probability distributions, random variables, moments, characteristic functions, modes of convergence, limit theorems, probability bounds. Prerequisites: STAT 6201 and STAT 6202; and knowledge of calculus through functions of several variables and series.

STAT 8258. Distribution Theory. 3 Credits.
Special distributions of statistics, small and large sample theory, order statistics, and spacings. Prerequisite: STAT 8257.

STAT 8259. Advanced Probability. 3 Credits.
Conditional expectation and martingales; weak convergence in general metric spaces and functional central limit theorems for i.i.d. random variables and martingales; applications to biostatistics. Prerequisite: STAT 8257 or an equivalent measure-theoretic introduction to probability.

STAT 8262. Nonparametric Inference. 3 Credits.
Inference when the form of the underlying distribution is unspecified. Prerequisites: STAT 6201 and STAT 6202.

STAT 8263. Advanced Statistical Theory I. 3 Credits.
Decision theoretic estimation, classical point estimation, hypothesis testing. Prerequisites: STAT 6201 and STAT 6202.

STAT 8264. Advanced Statistical Theory II. 3 Credits.
Asymptotic theory, hypothesis testing, confidence regions. Prerequisites: STAT 8257 and STAT 8263.

STAT 8265. Multivariate Analysis. 3 Credits.
Characterization and properties of the multivariate normal distribution, conditional distributions, multiple correlation, partial correlation, estimation of the mean vector and the covariance matrix, Wishart and Hotelling distributions and applications to hypothesis testing, discrimination, classification, and principle component analysis. Prerequisites: STAT 6201 and STAT 6202.
STAT 8266. Topics-Multivariate Analysis. 3 Credits.
Multivariate analysis of variance, principal component analysis, canonical correlation, factor analysis. Prerequisites: STAT 6201, STAT 6202 and STAT 8265.

STAT 8271. Foundational and Philosophical Issues in Statistics. 3 Credits.
Axiomatic underpinnings of Bayesian statistics, including subjective probability, belief, utility, decision and games, likelihood principle, and stopping rules. Examples from legal, forensic, biological, and engineering sciences. Students are expected to have a background in computer science, economics, mathematics, or operations research. Prerequisites: STAT 6201 and STAT 6202.

STAT 8273. Stochastic Processes I. 3 Credits.
Fundamental notions of Markov chains and processes, generating functions, recurrence, limit theorems, random walks, Poisson processes, birth and death processes, applications. Prerequisites: STAT 6201 and STAT 6202.

STAT 8274. Stochastic Processes II. 3 Credits.
Continuation of STAT 8273. Fundamental notions of Markov chains and processes, generating functions, recurrence, limit theorems, random walks, Poisson processes, birth and death processes, applications. Prerequisites: STAT 6201 and STAT 6202.

STAT 8281. Advanced Time Series Analysis. 3 Credits.
Autoregressive integrated moving average (ARIMA) modeling and forecasting of univariate and multivariate time series. Statespace or Kalman filter models, spectral analysis of multiple time series. Theory and applications using the University computer. Prerequisites: MATH 2233, STAT 6201 and STAT 6202.

STAT 8288. Topics in Sample Surveys. 3 Credits.
Advanced topics and research in sample surveys. Prerequisite: STAT 6287.

STAT 8289. Seminar. 3 Credits.
Admission by permission of instructor. May be repeated for credit provided the content differs.

STAT 8375. Econometrics I. 3 Credits.
Statistical foundations for econometrics; standard methods of estimation and inference for classical and generalized regression models. Same as ECON 8375.

STAT 8376. Econometrics II. 3 Credits.
Topics may include asymptotic theory, statistical endogeneity, instrumental variables estimation, discrete and limited dependent variable models, and time-series models. Same as ECON 8376. Prerequisite: STAT 8375.

STAT 8998. Advanced Reading and Research. 1-12 Credits.
May be repeated for credit. Restricted to doctoral candidates preparing for the general examination.

STAT 8999. Dissertation Research. 3-12 Credits.
May be repeated for credit. Restricted to doctoral candidates.