PHYSICS (PHYS)

Explanation of Course Numbers

- Courses in the 1000s are primarily introductory undergraduate courses.
- Those in the 2000s to 4000s are upper-division undergraduate courses that can also be taken for graduate credit with permission and additional work.
- Those in the 6000s and 8000s are for master’s, doctoral, and professional-level students.
- The 6000s are open to advanced undergraduate students with approval of the instructor and the dean or advising office.

PHYS 0801W. Dean’s Seminar. 3 Credits.

PHYS 1000. Dean’s Seminar. 3 Credits.
The Dean’s Seminars provide Columbian College first-year students focused scholarship on specific intellectual challenges. Topics vary by semester; see department for more details.

PHYS 1003. Physics for Future Presidents. 0-4 Credits.
A serious but accessible presentation of topics important for leaders to know—energy, global climate, high-tech devices, space travel, nuclear weapons, etc. Students possessing any level of scientific background are equipped with the concepts and analytical tools needed to make informed decisions and to argue their view persuasively. Laboratory fee.

PHYS 1005. How Things Work. 4 Credits.
Primarily for non-science majors. Physical principles are introduced through a study of everyday objects to see what makes them tick. This unconventional approach is primarily conceptual in nature and intended for students seeking a connection between science and the world in which they live. Prerequisite: high school algebra and trigonometry. Laboratory fee.

PHYS 1007. Music and Physics. 4 Credits.
Primarily for non-science majors. A comparative study of music and physics, showing parallels in the history of the two fields and emphasizing those topics in physics related to the theory of music and the production of sound by musical instruments, particularly classical mechanics and wave motion. Prerequisite: high school algebra and geometry. Laboratory fee.

PHYS 1008. Origin and Evolution of Ideas in Physics. 4 Credits.
Primarily for non-science majors. The evolution of ideas and their historical continuity in the search for basic physical theories. By presenting the world-views of great physicists of the past, the division of physics into many sub-disciplines is avoided and a humanistic approach is achieved. Prerequisite: high school algebra. Laboratory fee.

PHYS 1008W. Origin and Evolution of Ideas in Physics. 4 Credits.
Primarily for non-science majors. The evolution of ideas and their historical continuity in the search for basic physical theories. By presenting the world-views of great physicists of the past, the division of physics into many sub-disciplines is avoided and a humanistic approach is achieved. Prerequisite: high school algebra. Laboratory fee.

PHYS 1011. General Physics I. 4 Credits.
Classical physics. Mechanics, including Newton’s laws of motion, force, gravitation, equilibrium, work and energy, momentum, and rotational motion; periodic motion, waves, and sound; heat and thermodynamics. Prerequisite: high school trigonometry. Laboratory fee.

PHYS 1012. General Physics II. 4 Credits.
Classical and modern physics. Electrostatics, electromagnetism, direct and alternating current circuits, and electromagnetic radiation; geometrical and physical optics; special relativity; quantum theory; atomic physics; nuclear physics; particle physics; astrophysics and cosmology. Prerequisite: PHYS 1011. Laboratory fee.

PHYS 1021. University Physics I. 4 Credits.
Classical mechanics and thermodynamics using calculus. Newtonian mechanics: force, momentum, work and energy, mechanical equilibrium, linear, and rotational motion. Gravitation and fields. Atoms, physical properties of matter. Energy transfer and waves, sound. Laboratory fee. Credit cannot be earned for both PHYS 1021 and PHYS 1025. Prerequisite: MATH 1231.

PHYS 1022. University Physics II. 4 Credits.

PHYS 1022W. University Physics 2. 4 Credits.
PHYS 1023W. Modern Physics. 3 Credits.

PHYS 1026. University Physics II with Biological Applications. 4 Credits.
Periodic motion waves, and classical electromagnetism using calculus. Waves and sound. Electrostatics, Gauss’s law, capacitance. Electric resistance, electric current. Magnetism. Electrostatics in ionic solutions and cells, circuit models for nerves and ion channels. Geometric and physical optics. Physics principles and problem solving taught with examples and problems from the life sciences. Laboratory fee. Credit cannot be earned for both PHYS 1022 and PHYS 1026. Prerequisites: PHYS 1021 or PHYS 1025; and MATH 1232.

PHYS 2000. Sophomore Colloquium. 3 Credits.
Sophomore colloquia are small, seminar-type classes that deeply engage CCAS second-year students in a discipline, focus on a narrow issue of high interest and impact, and require independent research projects. May be repeated provided topic differs. Consult the Schedule of Classes for more details. Restricted to CCAS sophomores.

PHYS 2023. Modern Physics. 3 Credits.

PHYS 2151. Intermediate Laboratory I: Techniques and Methods. 3 Credits.
Experiments in electromagnetism, classical and quantum mechanics, atomic and nuclear physics with emphasis on experimental methods. Laboratory fee.

PHYS 2152. Intermediate Laboratory II: Instrumentation. 3 Credits.
Elementary electric and electronic analog and digital circuits. Topics include passive and active components in DC and AC circuits and operational amplifiers, with emphasis on measurement techniques. Laboratory fee.

PHYS 2163. Physical and Quantum Optics. 3 Credits.
Wave motion, electromagnetic aspects of light, dispersion of light in media, geometrical optics, polarization and optical properties of crystals, interference, diffraction, lasers, holography. Mathematical tools, including Fourier methods, developed as needed. The quantum description of light complements the classical description. Prerequisites: PHYS 2023 and MATH 2233.

PHYS 2182. Computational Electricity/Magn. 3 Credits.
Topics include passive and active components in DC and AC circuits and operational amplifiers, with emphasis on measurement techniques. Laboratory fee.

PHYS 2183. Computational Modern Physics. 3 Credits.

PHYS 3127. Biophysics: Macroscopic Physics in the Life Sciences. 3 Credits.
Physical principles applied to biological systems and medicine; blood flow, ultrasonics, spectroscopy, radiation biology, bioenergetics, ordering theory, and neural networks. Prerequisites: PHYS 1012 or PHYS 1022 or PHYS 1022W; and MATH 2233.

PHYS 3128. Biophysics: Microscopic Physics in the Life Sciences. 3 Credits.
Physical principles applied to biological systems on the nanometer scale; intermolecular forces, statistical principles applied to biological microstates, determining protein and nucleic acid structures, operation of protein motors and transport systems, and nanotechnology and instrumentation. Prerequisites: PHYS 1012 or PHYS 1022 or PHYS 1022W; MATH 2233. (Same as PHYS 2128).

PHYS 3161. Mechanics. 3 Credits.
Mechanics of mass points and rigid bodies. Newton’s laws, conservation laws, Euler’s equations, inertia tensor, small vibrations, and elements of Lagrange’s and Hamilton’s equations. Prerequisites: PHYS 1023W; and MATH 2184 and MATH 2233. Recommended background: MATH 3342 or equivalent.

PHYS 3163. Physical and Quantum Optics. 3 Credits.
Wave motion, electromagnetic aspects of light, dispersion of light in media, geometrical optics, polarization and optical properties of crystals, interference, diffraction, lasers, holography. Mathematical tools, including Fourier methods, developed as needed. The quantum description of light complements the classical description. Prerequisites: MATH 2233, MATH 2184 and MATH 3342; and PHYS 1023 or PHYS 1023W; for MATH 3342 an equivalent course may be substituted at the discretion of the instructor.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 3164</td>
<td>Thermal and Statistical Physics. 3 Credits.</td>
<td></td>
<td>Principles and application of thermodynamics to reversible and irreversible processes, with derivation from statistical postulates applied to the microscopic behavior of large systems at or near equilibrium. Topics include equilibrium thermodynamics, statistical mechanics, and kinetic theory of gases. Prerequisites: PHYS 1023 or PHYS 1023W; and MATH 2184 and MATH 3342; or permission of the instructor.</td>
</tr>
<tr>
<td>PHYS 3165</td>
<td>Electromagnetic Theory I. 3 Credits.</td>
<td></td>
<td>Electrostatics and magnetostatics, electric and magnetic fields in matter, scalar and vector potentials, electromagnetic induction. Maxwell’s equations. The methods of vector and tensor calculus are developed as needed, as are the method of images, Fourier series, and some computational methods. Prerequisites: MATH 2184, MATH 2233, MATH 3342 and PHYS 2023; or permission of the instructor. Recommended background: MATH 3343 or equivalent.</td>
</tr>
<tr>
<td>PHYS 3166</td>
<td>Electromagnetic Theory II. 3 Credits.</td>
<td></td>
<td>Conservation laws, electromagnetic waves, radiation, relativistic formulation of electrodynamics and potential fields. Prerequisites: PHYS 2023, PHYS 3165, MATH 2184, MATH 3342 and MATH 3343; or by permission of the instructor.</td>
</tr>
<tr>
<td>PHYS 3167</td>
<td>Principles of Quantum Physics. 3 Credits.</td>
<td></td>
<td>The conceptual framework and mathematical formalism of quantum mechanics. Wave-particle duality, wave functions, and eigenvalues. Schrödinger Equation and one-dimensional potential problems. Angular momentum, central potentials, and the hydrogen atom. Identical particles and spin. Scattering theory. Perturbation theory. Prerequisites: MATH 2184, MATH 2233, MATH 3342 and PHYS 2023; or permission of the instructor. Recommended background: MATH 3343 or equivalent.</td>
</tr>
<tr>
<td>PHYS 3181</td>
<td>Computational Physics. 3 Credits.</td>
<td></td>
<td>Numerical methods with physics, math, and engineering applications; numerical integration, ODE, PDE, Monte-Carlo methods, linear algebra, and other relevant numerical techniques. In addition to the course prerequisites students must be familiar with a programming language. Laboratory fee. Prerequisites: MATH 2233 and PHYS 3161.</td>
</tr>
<tr>
<td>PHYS 4170</td>
<td>Solid-State Physics. 3 Credits.</td>
<td></td>
<td>Structure of solids, lattices and lattice defects, deformation, vibrational and electronic contribution to specific heats, binding energies, electronic states in metals and semiconductors, magnetic properties of solids, superconductivity Prerequisites: PHYS 3165, PHYS 3167, MATH 3342 and MATH 3343; course equivalents for MATH 3342 and MATH 3343 may be substituted at the instructor’s discretion.</td>
</tr>
<tr>
<td>PHYS 4175</td>
<td>Nuclear Physics. 3 Credits.</td>
<td></td>
<td>Application of quantum physics to the description of nuclei and their interactions. Properties of nuclei, nuclear models, nuclear forces, and nuclear reactions are considered. Specific topics include the deuteron, n-p scattering, the optical model, the shell model, the liquid-drop model, beta decay, fission, and fusion. Prerequisite: MATH 3342, MATH 3343, PHYS 3165 and PHYS 3167; or permission of the instructor.</td>
</tr>
<tr>
<td>PHYS 4190</td>
<td>Special Topics. 1-4 Credits.</td>
<td></td>
<td>Topics vary by semester. May be repeated for credit provided topic differs. Consult the Schedule of Classes for more details.</td>
</tr>
<tr>
<td>PHYS 4192</td>
<td>Independent Study. 1-3 Credits.</td>
<td></td>
<td>Independent readings or directed study under the supervision of a faculty member. Credit varies, depending upon the nature of the work. May be repeated once for credit.</td>
</tr>
<tr>
<td>PHYS 4195</td>
<td>Physics Capstone. 3 Credits.</td>
<td></td>
<td>Students work in a mentored learning environment to design and conduct research in physics in an ethical manner, explore and prepare for various careers in physics, and disseminate research findings to different audiences. May be repeated for credit. Restricted to physics majors with junior standing.</td>
</tr>
<tr>
<td>PHYS 4195W</td>
<td>Physics Capstone. 3 Credits.</td>
<td></td>
<td>Students work in a mentored learning environment to design and conduct research in physics in an ethical manner, explore and prepare for various careers in physics, and disseminate research findings to different audiences. May be repeated for credit. Includes a significant engagement in writing as a form of critical inquiry and scholarly expression to satisfy the WID requirement. Restricted to physics majors with junior standing.</td>
</tr>
<tr>
<td>PHYS 4196</td>
<td>Undergraduate Research in Biophysics. 3 Credits.</td>
<td></td>
<td>Research on problems in biophysics approved by the faculty. May be repeated once for credit.</td>
</tr>
<tr>
<td>PHYS 4197</td>
<td>Undergraduate Research in Nuclear Physics. 3 Credits.</td>
<td></td>
<td>Research on problems in nuclear physics approved by the faculty. May be repeated once for credit.</td>
</tr>
<tr>
<td>PHYS 4200</td>
<td>Physics Symposium. 1 Credit.</td>
<td></td>
<td>Culmination of physics undergraduate studies. Communication of physics research orally and in writing with peer review of presentations and reports. Restricted to physics majors with senior standing.</td>
</tr>
<tr>
<td>PHYS 5701</td>
<td>Selected Topics. 0-4 Credits.</td>
<td></td>
<td>Topics vary by semester. May be repeated for credit provided topic differs. Consult the Schedule of Classes for more details.</td>
</tr>
</tbody>
</table>
PHYS 6120. Advanced Mechanics. 4 Credits.

PHYS 6130. Computational Physics I. 1 Credit.
Taken in conjunction with PHYS 6110 and PHYS 6120.

PHYS 6210. Electrodynamics and Classical Field Theory. 4 Credits.

PHYS 6220. Quantum Mechanics I. 4 Credits.
General aspects of quantum mechanics with emphasis upon the developmental principles involved. Operators, representations, transformation theory. Schroedinger and Heisenberg pictures, angular momentum, perturbation and scattering theory. Introduction to relativistic quantum field theory, first-order electromagnetic processes. Many-body theory. Prerequisite: Consent of a departmental graduate advisor. Corequisite to PHYS 6220: PHYS 6230; to PHYS 6320: PHYS 6330.

PHYS 6230. Computational Physics II. 1 Credit.

PHYS 6310. Statistical Mechanics. 4 Credits.
Classical and quantum statistics. Gibbs paradox, microscopic origins of entropy and other thermodynamic variables, fluctuations, ensemble theory, partition functions, distribution functions, density matrices. Applications include the harmonic oscillator, magnetic systems, ideal Fermi-Dirac and Bose-Einstein systems, blackbody radiation, phonons. Renormalization group, phase transitions and critical phenomena. Permission of the department graduate advisor required prior to enrollment. Corequisite: PHYS 6330.

PHYS 6320. Quantum Mechanics II. 4 Credits.

PHYS 6330. Computational Physics III. 1 Credit.

PHYS 6510. Communications in Physics. 0-3 Credits.
Student presentations on advanced topics in physics. Permission of the department graduate advisor required prior to enrollment.

PHYS 6590. Seminar. 0-1 Credits.
Lectures on current topics in physics. Permission of the department graduate advisor required prior to enrollment. May be repeated for credit.

PHYS 6599. Advanced Study. 3 Credits.
For students who have completed three semesters of course work in the core graduate physics curriculum. Problem sets aimed at development of a deeper and more advanced understanding of physics.

PHYS 6610. Nuclear and Particle Physics I. 3 Credits.
Theory and experiment of the standard model of elementary particle physics of strong and electro-weak interactions. Emergence of nuclear interactions and pion physics. Effective field theory, non-perturbative methods, lattice simulations, nuclear models, nuclear reactions. Path integral, gauge fields, S-matrix theory, dispersion relations, renormalization program. Prerequisite: PHYS 6320 and permission of the graduate advisor.

PHYS 6620. Biophysics I. 3 Credits.
Topics include molecular biophysics, modern simulation methodologies and experimental methodologies for probing biological systems.

PHYS 6630. Astrophysics I. 3 Credits.
Astrophysical examination of stellar evolution, including properties of stellar matter, equations of state, nucleosynthesis, red giants, supernovae, close binary stellar systems, gamma-ray bursts. Overview of observational techniques, including photometry; IR, UV, X-ray observation, gamma-ray frequencies; astrophysical data analysis; evidence for stellar and cosmological models. Permission of the department graduate advisor required prior to enrollment.

PHYS 6710. Nuclear and Particle Physics II. 3 Credits.
Theory and experiment of the standard model of elementary particle physics of strong and electro-weak interactions. Emergence of nuclear interactions and pion physics. Effective field theory, non-perturbative methods, lattice simulations, nuclear models, nuclear reactions. Path integral, gauge fields, S-matrix theory, dispersion relations, renormalization program. (Academic year) Prerequisite: PHYS 6320.

PHYS 6720. Biophysics II. 3 Credits.
Phys 6720: Topics include theoretical and computational methods for genes, proteins, and bionetworks; models of biological complexity; applications of non-equilibrium statistical mechanics and combinatorial optimization. Prerequisite: Phys 6310. This course may be taken repeatedly for credit to a maximum of 15 credits.
PHYS 6730. Astrophysics II. 3 Credits.

PHYS 6810. Applied Statistics and Data Analysis in Physics.
3 Credits.
Statistical inference methods applied to physical science data;
modern statistical methods; create informative and appealing
visualizations of the data and inferred statistically-sound trends,
correlations, and dependencies; analytical and practical
skills for physical (and other) data analysis and interpretation
using solid statistical methods. Programming experience and
working knowledge of either Matlab, Mathematica, Python, IDL,
or R are required. Prior experience in physics (nuclear physics,
biophysics, or astrophysics) or data science is recommended.
Equivalent courses may be substituted for the prerequisites.
Prerequisites: MATH 2184, MATH 2233, PHYS 1021 and PHYS
1022.

PHYS 6998. Thesis Research. 3 Credits.

PHYS 6999. Thesis Research. 3 Credits.

PHYS 8110. Selected Topics in Theoretical Nuclear Physics.
3 Credits.
Prerequisite: Consent of a departmental graduate advisor.
May be repeated once for credit with permission of graduate
advisor.

PHYS 8120. Selected Topics in Experimental Nuclear
Physics. 3 Credits.
Prerequisite: Consent of a departmental graduate advisor.
May be repeated once for credit with permission of graduate
advisor.

PHYS 8130. Selected Topics in Theoretical Biophysics. 3
Credits.
Prerequisite: Consent of a departmental graduate advisor.
May be repeated once for credit with permission of graduate
advisor.

PHYS 8140. Selected Topics in Experimental Biophysics. 3
Credits.
Prerequisite: Consent of a departmental graduate advisor.
May be repeated once for credit with permission of graduate
advisor.

PHYS 8150. Selected Topics in Astrophysics. 3 Credits.
Prerequisite: Consent of a departmental graduate advisor.
May be repeated once for credit with permission of graduate
advisor.

PHYS 8998. Advanced Reading and Research. 1-4 Credits.
May be repeated once for credit. Restricted to doctoral
candidates preparing for the general examination.

PHYS 8999. Dissertation Research. 1-12 Credits.
May be repeated for credit. Restricted to doctoral candidates.