ANATOMY AND CELL BIOLOGY (ANAT)

Explanation of Course Numbers

- Courses in the 1000s are primarily introductory undergraduate courses
- Those in the 2000s to 4000s are upper-division undergraduate courses that also may be taken for graduate credit with permission and additional work assigned
- Those in the 6000s and 8000s are for master’s, doctoral, and professional-level students
- The 6000s are open to advanced undergraduate students with approval of the instructor and the dean or advising office

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAT 1099</td>
<td>Variable Topics</td>
<td>1-36</td>
</tr>
<tr>
<td>ANAT 2130</td>
<td>Human Embryology</td>
<td>3</td>
</tr>
<tr>
<td>ANAT 2150</td>
<td>Human Microscopic Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>ANAT 2160</td>
<td>Human Functional Neuroanatomy</td>
<td>3</td>
</tr>
<tr>
<td>ANAT 2181</td>
<td>Human Gross Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>ANAT 3099</td>
<td>Variable Topics</td>
<td>1-12</td>
</tr>
<tr>
<td>ANAT 5099</td>
<td>Variable Topics</td>
<td>1-99</td>
</tr>
<tr>
<td>ANAT 6130</td>
<td>Clinically Oriented Human Embryology</td>
<td>3</td>
</tr>
<tr>
<td>ANAT 6150</td>
<td>Clinically Oriented Human Microscopic Anatomy</td>
<td>4</td>
</tr>
<tr>
<td>ANAT 6160</td>
<td>Human Clinical Neuroanatomy</td>
<td>3</td>
</tr>
<tr>
<td>ANAT 6181</td>
<td>Clinically Oriented Human Gross Anatomy</td>
<td>4</td>
</tr>
</tbody>
</table>

ANAT 3099. Variable Topics. 1-12 Credits.
ANAT 5099. Variable Topics. 1-99 Credits.
ANAT 6130. Clinically Oriented Human Embryology. 3 Credits.
The mechanisms of human embryology with clinical correlations of embryological development. Developmental control mechanisms and development of basic organ systems. Molecular control of development. Assisted reproductive technologies. Congenital birth defects. Demonstration labs and online animations for clinical correlates. Restricted to students in the graduate certificate in anatomical and translational sciences program. Recommended background: Introductory course in biology. Credit cannot be earned for this course and ANAT 2130.

ANAT 6150. Clinically Oriented Human Microscopic Anatomy. 4 Credits.
The normal histological structure of cells, tissues, and organs of the human body with emphasis on clinical relevance; structural/functional correlates at both the light and electron microscopic levels; alterations in normal histology through disease or injury and the etiology of various disease states; integration of histological concepts with clinical correlates. Restricted to students in the graduate certificate in anatomical and translational sciences (GCATS) or master’s in anatomical and translational sciences (M-ATS) programs. Prerequisites: BISC 1111 and BISC 2202.

ANAT 6160. Human Clinical Neuroanatomy. 3 Credits.
Anatomy and function of the human central and peripheral nervous systems. Emphasis on clinical relevance. Gross and microscopic structure, embryology, and neurophysiology of the brain, spinal cord, and nerves with descriptions of alterations in normal anatomy through disease or injury. Completion of an introductory biology course for science or non-science majors is required prior to enrollment. Restricted to students in the anatomical and translational sciences graduate certificate and Institute for Biomedical Sciences PhD programs or with the permission of the course director.

ANAT 6181. Clinically Oriented Human Gross Anatomy. 4 Credits.
Structural organization of the human body and the relationship of the organization to regional and systems-related functions; application of normal anatomical structure/function relationships to understand clinical implications of disease or injury. The laboratory is used for cadaveric dissection to learn anatomical relationships and basic knowledge of radiographic imaging. Restricted to students in the graduate certificate and master’s programs in anatomical and translational sciences and other graduate students with the permission of the course director. Recommended background: Completion of higher-level science courses during the student’s undergraduate degree program. Credit cannot be earned for this course and ANAT 2181.
ANAT 6182. Fundamentals of Translational Science. 4 Credits.
Fundamentals of organ development and study; how molecular
defects during development can lead to disease. Restricted
to students in the graduate certificate in anatomical and
translational sciences program.

ANAT 6203. Human Developmental Anatomy. 1 Credit.

ANAT 6204. Neuroanatomy. 2 Credits.

ANAT 6215. Anatomy for Physician Assistant Students. 3 Credits.
Lecture and student examination of prosected cadavers.
Provides foundational anatomical knowledge for future courses
in the physician assistant curriculum. Restricted to graduate
students enrolled in the physician assistant program.

ANAT 6216. Cellular Anatomy and Histology. 2 Credits.

ANAT 6219. Biomedical Ethics for Translational Sciences. 2 Credits.
Ethical issues relevant to the practice of medicine and
biomedical research involving human subjects. Permission
of the instructor required prior to enrollment. Restricted to
graduate students. Recommended background: ANAT 6130,
ANAT 6150, ANAT 6160, ANAT 6181 and ANAT 6292.

ANAT 6221. Special Topics in Stem Cell Biology. 1-3 Credits.

ANAT 6222. Special Topics in Stem Cell Biology. 1-3 Credits.

ANAT 6223. Special Topics in Regenerative Medicine. 2 Credits.
Students attend seminars given by invited lecturers to present
their research findings and breakthroughs on topics of
regenerative medicine. Seminars can be sponsored by the
Department of Anatomy and Regenerative Biology, the Stem
Cell Interest Group Journal and Data Club, the Molecular
Medicine Graduate Program (MMED 8214), and the GW
Institute for Neuroscience. Restricted to Graduate Certificate
in Anatomical and Translational Sciences only. Prerequisites:
Introductory Biology for Science or non-Science Majors.

ANAT 6249. Introduction to Anatomical Research. 1 Credit.

ANAT 6252. Human Variation. 1 Credit.

ANAT 6253. Developmental Neurobiology. 3 Credits.

ANAT 6260. Developmental Genetics. 2 Credits.

ANAT 6262. Gross Anatomy of Upper and Lower Extremities. 2 Credits.

ANAT 6264. Gross Anatomy of Head and Neck. 2 Credits.

ANAT 6266. Gross Anatomy of Thorax and Abdomen. 2 Credits.

ANAT 6268. Gross Anatomy of Pelvis, Perineum, and Lower Extremities. 2 Credits.

ANAT 6275. Advanced Studies in Translational Sciences. 3 Credits.
Semester-long rotation in a research laboratory conducting
translational researching, applying fundamental concepts
learned in didactic courses, and developing versatility with new
technologies. Permission of the program director is required.
Restricted to students in the graduate certificate and master
of science in anatomical and translational sciences programs.
Prerequisites: Prior completion of an introductory-level course
in biology for science or non-science majors.

ANAT 6276. Advanced Studies in Anatomy. 1 Credit.
Detailed study of an anatomic topic tailored to the needs of
the individual student. Restricted to graduate students who
are in the Graduate Certificate in Anatomical and Translational
Sciences program or who have permission of the program
director and medical students.

ANAT 6279. Applied Regional Anatomy. 1-5 Credits.
Regional dissection, guided readings.

ANAT 6284. Applied Surface Anatomy and Radiology. 5 Credits.

ANAT 6291. Special Projects in Anatomy. 1-12 Credits.
Independent study on any aspect of gross anatomy.

ANAT 6292. Projects in Anatomical Sciences: Introduction
to Neuroradiology. 1 Credit.
Various imaging techniques and approaches to visualize
normal neuroanatomy toward development and application
of skills in teamwork, presentation, discussion, and literature
searches. Restricted to students in the graduate certificate in
anatomical and translational sciences program.

ANAT 8120. Graduate Human Gross Anatomy. 5 Credits.
An in-depth introduction to human gross anatomy with
cadaveric dissection. The structural organization of the human
body, including its regional and systems-related functions.
The relationship between normal human anatomical variation
in structure and function and how disease and/or injury
affect these relationships. Permission of the instructor is
required prior to enrollment. Offered spring semester in even
years. Restricted to doctoral students with permission of the
instructor. Recommended background: Prior coursework in the
biological sciences or anthropology.

ANAT 8501. Didactic Anatomy. 3 Credits.
Development of a didactic program to include human
developmental anatomy, microscopic anatomy, gross anatomy,
and/or neuroanatomy. May also include interdepartmental
study.
ANAT 8802. Summer Remedial: Human Developmental Anatomy. 1 Credit.