FORENSIC SCIENCES

As part of the Columbian College of Arts and Sciences' natural, mathematical, and biomedical sciences programs, forensic sciences provides an understanding of the integration of forensic disciplines with the investigation of criminal activity, while providing an overview of the analytical methods, procedures, equipment, and data used by forensic specialists. Coursework emphasizes the identification and analysis of evidence as well as the interpretation and reporting of the results.

The master of forensic sciences (MFS) degree is offered in the fields of forensic chemistry and forensic molecular biology. The field of forensic chemistry is intended for students who are interested in a career in forensic drug analysis and/or trace evidence, while the field of forensic molecular biology is intended for students interested in a career in forensic DNA analysis. Students interested in pursuing a career as forensic scientists in other fields, for example latent fingerprint examination, firearm and toolmark identification, or questioned document examination, should complete the master of forensic sciences degree without selecting a field.

The master of science (MS) degree is offered in the field of crime scene investigation. In addition, a graduate certificate is offered in forensic investigation.

GRADUATE

Master's programs

- Master of Forensic Sciences (http://bulletin.gwu.edu/arts-sciences/forensic-sciences/ma)
- Master of Forensic Sciences in the field of forensic molecular biology (http://bulletin.gwu.edu/arts-sciences/forensic-sciences/mfs-forensic-molecular-biology)
- Master of Forensic Sciences in the field of forensic chemistry (http://bulletin.gwu.edu/arts-sciences/forensic-sciences/mfs-forensic-chemistry)
- Master of Science in the field of crime scene investigation (http://bulletin.gwu.edu/arts-sciences/forensic-sciences/ms-crime-scene-investigation)

Combined program

- Dual Bachelor of Science with a major in chemistry/Master of Forensic Sciences with a concentration in forensic chemistry (http://bulletin.gwu.edu/arts-sciences/chemistry/combined-bs-mfs-forensic-chemistry)

CERTIFICATE

Certificate programs

- Graduate certificate in forensic investigation (http://bulletin.gwu.edu/arts-sciences/forensic-sciences/certificate-forensic-investigation)

FACULTY

Professors I.S. Lurie (Research), W.F. Rowe, M.S. Schanfield, V. Weedn

Associate Professor D. Podini (Chair)

Assistant Professor I. Marginean

EXPLANATION OF COURSE NUMBERS

- Courses in the 1000s are primarily introductory undergraduate courses
- Those in the 2000s to 4000s are upper-division undergraduate courses that can also be taken for graduate credit with permission and additional work
- Those in the 6000s and 8000s are for master’s, doctoral, and professional-level students
- The 6000s are open to advanced undergraduate students with approval of the instructor and the dean or advising office

Note: FORS 2118 and FORS 2119 are available only to students conditionally admitted to programs offered by the Department of Forensic Sciences; credit does not apply to any degree programs at GW.

FORS 2102. Introduction to Forensic Science I. 3 Credits.
The application of science to the criminal justice system; crime scene processing, crime scene reconstruction, investigation of fires and explosions, impression evidence, trace evidence, and computer forensics. Completion of two semesters of a laboratory science other than astronomy and permission of the instructor are required prior to enrollment.

FORS 2104. Introduction to Forensic Sciences II. 3 Credits.
The application of science to the criminal justice system; personal identification, analysis of drugs, forms of trace evidence, identification of biological fluids, forensic pathology, and forensic toxicology. Prerequisites: two semesters of a laboratory science other than astronomy and permission of instructor.

FORS 2104W. Introduction to Forensic Sciences. 3 Credits.
Topics in the application of science to the criminal justice system, including personal identification, analysis of drugs, forms of trace evidence, identification of biological fluids, forensic pathology, and forensic toxicology. Includes a significant engagement in writing as a form of critical inquiry and scholarly expression to satisfy the WID requirement.
FORS 2151. Crime Scene Investigation. 4 Credits.
Examination, analysis, and reconstruction of crime scenes; principles from biology, chemistry, and physics applied to identification, documentation, preservation, and collection of physical evidence.

FORS 2190. Topics in Forensic Science. 3 Credits.
Restricted to juniors. Prerequisites: BISC 1005 or BISC 1006; and CHEM 1003 or CHEM 1004.

FORS 6004. Fundamentals of Forensic Science I. 3 Credits.
This course surveys crime scene investigation techniques, medicolegal death investigation, and patterned evidence examination. This satisfies the 10 hours instruction for a FEPAC accredited MFS degree in the core topics of crime scene investigation, physical evidence concepts, and pattern evidence. This course helps students prepare for the American Board of Criminalistics (“ABC”) examination in the disciplines of firearms and toolmarks, fingerprints, and questioned documents. Lectures are given by faculty members and guest lecturers who are subject matter experts on the topic presented. This course includes a four hour laboratory (fingerprints). This is a required course for MFS students. This course, along with FORS 6005 Fundamentals of Forensic Science II, replaces FORS 6213, Elements of Forensic Science (3 Credits). Prerequisite: None.

FORS 6005. Fundamentals of Forensic Science II. 3 Credits.
This course surveys the traditional crime laboratory (criminalistics) disciplines—specifically forensic drug chemistry, forensic toxicology, trace evidence, fire debris, explosives, and forensic molecular biology. This satisfies the 10 hours instruction for a FEPAC accredited MFS degree in the core topics of analytical chemistry and instrumental methods of analysis, drug chemistry/toxicology, microscopy and materials analysis, and forensic biology. This course helps students prepare for the American Board of Criminalistics (“ABC”) examination in the disciplines of forensic biology, trace evidence, fire debris, controlled substances, and toxicology/blood alcohol determinations.

FORS 6010. Bloodstain Pattern Analysis I. 3 Credits.
Human blood in flight and the patterns it makes on target surfaces. Crime scene investigation, crime scene analysis, and crime scene reconstruction. Laboratory fee. Restricted to graduate students. Recommended background: FORS 6251 and FORS 6256.

FORS 6011. Bloodstain Pattern Analysis II. 3 Credits.
Continuation of the concepts learned in FORS 6010. Serving as an expert witness; refining blood pattern analysis and documentation skills; effectively communicating observations, analysis, and conclusions in the courtroom. Laboratory fee. Restricted to graduate students. Prerequisites: FORS 6010. Recommended background: FORS 6251 and FORS 6256.

FORS 6020. Ethics, Professional Responsibility, and Quality Assurance. 2 Credits.
Issues of forensic science laboratory professional responsibility, including ethics, public policy, and quality assurance. Satisfies 10 hours of instruction for a Forensic Science Education Programs Accreditation Commission (FEPAC) accredited MFS degree in the core topics of ethics and professional responsibility and quality assurance; also assists in preparation for the American Board of Criminalistics examination in the area of ethics. Taken online during the summer session.

FORS 6021. Forensic Biology. 3 Credits.
Principles of the forensic analysis of blood and other biological materials. Specific procedures and techniques used in forensic biology and serology. Laboratory fee.

FORS 6203. Examination of Questioned Documents. 3 Credits.
Theory and principles of handwriting and handprinting, duplicating processes, paper manufacture and fiber analysis; studies of paper and methods of examining questioned documents. Laboratory fee.

FORS 6204. Firearms and Toolmark Identification. 3 Credits.
Methods for identifying firearms, bullet cartridge casings, toolmarks, gunshot residue, obliterated serial numbers, tire marks, and footprints. Laboratory fee.

FORS 6206. Trace Evidence Analysis. 3 Credits.
Principles that govern the analysis of trace evidence, including recovery, transference, interpretation, and comparison. Assessment of evidentiary value, reporting, and court testimony. Laboratory fee.

FORS 6207. Photography in the Forensic Sciences. 3 Credits.
Basic use of forensic photography, including selection and use of equipment, photographs as evidence, close-up work, and common misconceptions. Laboratory fee.

FORS 6210. Advanced Instrumental Analysis. 3 Credits.
Theory and practice of modern instrumental methods used in forensic laboratories, including mass spectrometry, optical spectroscopy, microscopy, chromatographic and electrophoretic separations. It is a required course for MFS students with concentration in Forensic Chemistry and Forensic Toxicology. Recommended background: undergraduate analytical methods.

FORS 6213. Elements of of Forensic Sciences. 3 Credits.
FORS 6215. Science of Fingerprints. 3 Credits.
A general overview of the history and biology of and principles underlying the science of fingerprints. Latent print development methods, recording, classification, and methodology of comparison of fingerprints and palm prints to include latent prints. Subject matter is covered at an introductory level; additional study is required to develop expertise as a latent fingerprint examiner.
FORS 6216. Development of Latent Prints. 3 Credits.
This Advanced Fingerprint Science Course provides the
students an increased understanding of the main principles
of fingerprint identification: uniqueness and persistence. The
course is broken down into three main sections, which address
the chemistry behind processing fingerprints, the anatomy and
physiology of friction ridge skin and the extensive research
that has been conducted in the field of fingerprint science. The
students are required to complete a skills processing exam to
assess their understanding and ability to develop latent prints
on items of evidence. In addition, there is a written examination
covering the topics of biology and development of friction
ridge skin and a final comprehensive exam. Upon conclusion
of this course, each student should have a firm grasp of why
friction ridge skin can be used as a means of identification.
Recommended background: FORS 6215.

FORS 6217. Fingerprint Comparisons. 3 Credits.
In-depth study of analysis, comparison, evaluation, and
verification (ACE-V) methodology; assessing the quality
and quantity of information and establishing a tolerance for
comparison using the effects of distortion; uniqueness and
persistance; anatomy and embryology of friction ridge skin.
Laboratory fee. Prerequisites: FORS 6215.

FORS 6219. Digital Image Processing. 3 Credits.
Digital images of marginal value can be processed to reveal
details which had been in the original, but were difficult
to see. These changes must be done in ways to survive
court challenges. Best practices for doing so are provided.
Prerequisites: FORS 6207 or permission of the instructor.
Recommended background: graduate level work in MS/CSI,
MFS/FRA, MS/FRA or Grad Cert in Forensic Investigations;
graduate-level work in crime scene investigation and/or
friction ridge analysis, or in the graduate certificate program in
forensics investigations.

FORS 6224. Criminal Law for Forensic Scientists. 3 Credits.
This course provides an overview of criminal law offenses,
criminal law procedures, issues of evidence recovery,
admissibility of scientific evidence, and expert testimony, with
an emphasis on the interaction between the criminal process
and forensic science. A moot court experience is integral to this
course. (This course combines and replaces Crim Law I and III.).

FORS 6225. Statistics for Forensic Scientists. 3 Credits.
Statistics with a focus on forensic applications. Emphasis on the
Bayesian approach. Logical, probabilistic statistical reasoning
skills, and R software skills. Course content is the basis for an
examination question on the comprehensive examination.
Prerequisite: An undergraduate statistics course.

FORS 6231. Principles of Toxicology. 3 Credits.
Concepts of toxicology, including its historical development
and modern applications, drug disposition, mechanisms of
toxicity; factors that influence toxicity and toxicity evaluation.

FORS 6232. Analytical Toxicology. 3 Credits.
Principles and procedures used in the isolation, identification,
and quantitation of drugs of abuse from human samples.

FORS 6234. Medicinal Chemistry I. 3 Credits.
Theory and principles of classification, synthesis, and structure
activity relationships of drugs. Discussion of the complex
chemical events that take place between administration of
a drug and its action on the user, with emphasis on drugs of
abuse.

FORS 6235. Medicinal Chemistry II. 3 Credits.
Chemical, pharmacological, toxicological, and pathological
characteristics of commonly abused drugs, including ethanol,
barbiturates, narcotics, stimulants, and hallucinogens.

FORS 6236. Forensic Toxicology I. 3 Credits.
Biological, chemical, and pharmacological principles that
underlie forensic toxicology. Prerequisites: FORS 6235 or
permission of the instructor.

FORS 6237. Forensic Toxicology II. 3 Credits.
Lectures, student seminars, and projects dealing with topics
of current interest in forensic toxicology. Prerequisites: FORS
6236 or permission of the instructor.

FORS 6238. Forensic Chemistry I. 3 Credits.
Examination of glass and soils. Laboratory exercises include
refractive index measurements using immersion methods;
polarized light observations of minerals; x-ray diffraction
analysis of minerals; and classical chemical and physical
methods of analysis. Laboratory fee.

FORS 6239. Forensic Chemistry II. 3 Credits.
Examination of arson accelerants, textile fibers, plastics, and
paints. Laboratory exercises include infrared spectrometry and
pyrolysis-gas-liquid chromatography of polymeric materials,
as well as classical chemical and physical methods of analysis.
Laboratory fee. Prerequisites: FORS 6238 or permission of the
instructor.

FORS 6240. Forensic Drug Analysis. 3 Credits.
Examination of dosage forms of drugs. Laboratory exercises
include color spot tests, crystal tests, infrared spectrometry and
gas chromatography-mass spectrometry. Laboratory fee.

FORS 6241. Forensic Molecular Biology I. 3 Credits.
Techniques of molecular biology applied to the collection,
examination, analysis, and interpretation of biological
evidence.

FORS 6242. Forensic Molecular Biology II. 3 Credits.
Advanced methods of forensic molecular biology. Laboratory
examinations and classifications of dried blood and other
biological materials through a variety of nuclear and
mitochondrial markers. Laboratory fee. Prerequisites: FORS
6241 and permission of the instructor.

FORS 6243. Forensic Molecular Biology III. 3 Credits.

FORS 6246. Human Genetic Variation. 3 Credits.
The genetic variation in human populations as a framework for
measurement and analysis of genetic diversity and evolutionary
process. Consideration of the possible roles of cultural change
leading to adaptive/selective events. Same as ANTH 6406.
FORS 6247. Population Genetics. 3 Credits.
Origin, maintenance, and possible significance of genetic variation in populations. Selection, genetic drift, and population structure are emphasized. Both theoretical and applied aspects of population genetics are discussed. Same as BISC 6228.

FORS 6250. Crime Scene Investigation for Lab Personnel. 3 Credits.
A condensed offering of the subject matter of FORS 6251-6252. FORS 6250 cannot be taken for credit toward the crime scene investigation concentration. Laboratory fee.

FORS 6251. Crime Scene Investigation I. 3 Credits.
Examination, analysis, and reconstruction of crime scenes. Principles from biology, chemistry, and physics applied to identification, documentation, preservation, and collection of physical evidence. Laboratory fee.

FORS 6252. Crime Scene Investigation II. 3 Credits.
Continuation of FORS 6251. Examination, analysis, and reconstruction of crime scenes. Principles from biology, chemistry, and physics applied to identification, documentation, preservation, and collection of physical evidence. Laboratory fee.

FORS 6254. Forensic Psychiatry. 3 Credits.
Introduction to the constructs of dynamic psychiatry, psychiatric treatment, and the nomenclature of mental disorders. Consideration of expert testimony, direct examination, and cross-examination in hospitalization and criminal cases.

FORS 6255. Investigation of Child Abuse. 3 Credits.
This course integrates medical, scientific, psychological, sociological and legal information for investigators and professionals involved in the field of child abuse. Special emphasis is placed on the application of research-supported data to situations involving the murder, abuse and exploitation of children.

FORS 6256. Forensic Pathology. 3 Credits.
Terminology and scientific techniques used in medico-legal investigations, sudden or unexpected deaths, homicides, suicides, accidental deaths, and trauma.

FORS 6257. Medicolegal Death Investigation. 3 Credits.
Medical, scientific, sociological, and legal methodologies applied to forensic investigations. Aspects of death scene analysis by a medical examiner, including autopsy procedures, unidentified remains, child death investigations, and mass disaster investigations. Laboratory fee. Prerequisites: FORS 6256 and permission of the instructor.

FORS 6258. The Investigation of Sexual Assault and Other Sex Crimes. 3 Credits.
This course integrates medical, psychological, sociological and legal information for investigators and professionals involved in the field of sex crime investigation. Special emphasis is placed on the application of research-supported data to situations involving the sexual exploitation and victimization of adults.

FORS 6290. Selected Topics. 3 Credits.
Current issues in research, investigation, and law.

FORS 6291. Computer Forensics III: Advanced Techniques. 3 Credits.
Further examination of methods and techniques used to conduct and report high-technology crime investigations. Open only to students enrolled in the department or by approval of the program director. Laboratory fee. Prerequisite: FORS 6278.

FORS 6292. Graduate Seminar. 1 Credit.
Students in designated forensic sciences degree programs must register for this course in their first semester and again after completion of the required independent research project.

FORS 6295. Research. 1-12 Credits.
Research on problems approved by the department, under the supervision of an appropriate member of the program faculty. Admission by permission only.

FORS 6298. Forensic Sciences Practicum. 1-3 Credits.
Internship experience in a forensic science laboratory or criminal justice agency, under the supervision of an appropriate member of the program faculty. Students must preregister for this course. Admission by permission only.

FORS 6998. Thesis Research. 3 Credits.
FORS 6999. Thesis Research. 3 Credits.