BIOLOGICAL SCIENCES

Biological sciences explore the science of life, from biomolecules to ecosystems. Courses and ongoing research programs are focused in three general areas: cell and molecular biology, ecology, and evolution and systematics. In research laboratories, students and faculty members work together on projects that range from dinosaur evolution through an investigation of how misfolded proteins interfere with insulin production. Many departmental faculty members have working relationships with scientists in surrounding education and federal institutions, and the program has a collaboration of more than 100 years standing with the Smithsonian Institution National Museum of Natural History.

UNDERGRADUATE

Bachelor's programs

- Bachelor of Arts with a major in biology (http://bulletin.gwu.edu/arts-sciences/biological-sciences/ba-biology)
- Bachelor of Science with a major in biology (http://bulletin.gwu.edu/arts-sciences/biological-sciences/bs-biology)

Combined Program

- Dual Bachelor of Science with a major in biology and Master of Science in the field of biological sciences (http://bulletin.gwu.edu/arts-sciences/biological-sciences/combined-bs-ms)

Minor

- Minor in biology (http://bulletin.gwu.edu/arts-sciences/biological-sciences/minor-biology)

GRADUATE

Master's program

- Master of Science in the field of biological sciences (http://bulletin.gwu.edu/arts-sciences/biological-sciences/ms)

Doctoral program

- Doctor of Philosophy in the field of biological sciences (http://bulletin.gwu.edu/arts-sciences/biological-sciences/phd)

FACULTY


Associate Professors P. Hernandez, C.A. Forster, A. Jeremic, J.T. Lill


Adjunct Professors C. Brown

COURSES

Explanation of Course Numbers

- Courses in the 1000s are primarily introductory undergraduate courses
- Those in the 2000s to 4000s are upper-division undergraduate courses that can also be taken for graduate credit with permission and additional work
- Those in the 6000s and 8000s are for master’s, doctoral, and professional-level students
- The 6000s are open to advanced undergraduate students with approval of the instructor and the dean or advising office

Departmental prerequisite: BISC 1115 Introductory Biology: Cells and Molecules and BISC 1125 Introduction to Cells and Molecules Laboratory, and BISC 1116 Introductory Biology: The Biology of Organisms and BISC 1126 Introduction to Organisms Laboratory or equivalent are prerequisite to all upper-division biological sciences courses except by permission of the instructor.

BISC 1000. Dean’s Seminar. 3 Credits.

The Dean’s Seminars provide Columbian College first-year students focused scholarship on specific intellectual challenges. Topics vary by semester; see department for more details.

BISC 1001. Departmental Seminar. 0 Credits.

BISC 1005. The Biology of Nutrition and Health. 3 Credits.

A study of the human body and its disorders and diseases through examination of the essential molecules of life, nutrition, digestion, genetics, and reproduction. For non-majors. Same as BISC 1007.

BISC 1006. The Ecology and Evolution of Organisms. 3 Credits.

Introduction to ecology and evolution, including man’s impact on other plants and animals, and an overview of Earth’s biodiversity. For non-majors.

BISC 1007. Food, Nutrition, and Service. 3 Credits.

A study of biology and nutrition that uses service learning to reinforce course concepts. Topics include the need for humans to consume other organisms, processing of consumed nutrients, unexpected effects of nutritional consumption, and measures to improve nutrition.
BISC 1008. Understanding Organisms through Service Learning. 3 Credits.
The evolution of life on earth; the value of other organisms, their role in our world, and how humans can cause harm to this infrastructure. Students work with a community partner to perform activities that assist the partner while reinforcing course concepts.

BISC 1111. Introductory Biology: Cells and Molecules. 4 Credits.
Nutrition and metabolism, cellular and developmental biology, genetics, and molecular biology of plants and animals. As of fall 2017, this course has been replaced by BISC 1115 and and its lab component BISC 1125.

BISC 1112. Introductory Biology: The Biology of Organisms. 4 Credits.
Concepts and methods in the study of whole organisms. Evolutionary theory; population biology; diversity of plants, animals, fungi, and microorganisms; ecology and behavior; and animal structure and function. As of fall 2017, this course has been replaced by BISC 1116 and and its lab component BISC 1126.

BISC 1115. Introductory Biology: Cells and Molecules. 3 Credits.
Structures and functional interactions of biomolecules and cells in microorganisms, animals, and plants. Equivalent to BISC 1111 without laboratory.

BISC 1116. Introductory Biology: The Biology of Organisms. 3 Credits.
Concepts and methods in the study of whole organisms; evolutionary theory; population biology; diversity of plants, animals, fungi, and microorganisms; ecology and behavior; and animal structure and function.

BISC 1120. Laboratory Introduction to Biomolecular Research. 2 Credits.
Research methods in the study of proteins and DNA; focus on preparation for working with faculty members on their research. Faculty approval is required prior to registration. Laboratory fee. Prerequisites: BISC1111 or BISC 1115. (Same as BISC 1125, HONR 1120).

BISC 1125. Introduction to Cells and Molecules Laboratory. 1 Credit.
Laboratory associated with BISC1115. Experimental methods in the study of cells and molecules, proteins, enzymes, DNA, and molecular genetics. Prerequisites: BISC1115.

BISC 1126. Introduction to Organisms Laboratory. 1 Credit.
Laboratory associated with BISC 1116. Experimental methods in the study of whole organisms; population biology; diversity of plants, animals, fungi, and microorganisms; ecology and behavior; and animal structure and function. Laboratory fee. Prerequisites: BISC 1116.

BISC 2000. Sophomore Colloquium. 3 Credits.
Topics in biological diversity from the perspective of species and within the conceptual framework of evolutionary biology; the explanatory power, simplicity, and grandeur of evolution and its products; how questions and hypotheses are empirically addressed. Restricted to sophomores with permission of the department. Prerequisites: BISC 1115 and BISC 1125; and BISC 1116 and BISC 1126.

BISC 2202. Cell Biology. 3 Credits.
Structure and function of biological molecules and cellular organelles; cellular interactions. Prerequisites: BISC 1115 and BISC 1125; and BISC 1116 and BISC 1126 except by permission of the instructor and one semester of organic chemistry.

BISC 2207. Genetics. 3 Credits.
Introduction to genetics, with emphasis on the integration of transmission of genetic traits and the molecular basis of gene action. Also includes cytogenetics, gene regulation, and examples of current applications of genetic technology. Prerequisites: BISC 1115 and BISC 1125; and BISC 1116 and BISC 1126 or permission of the instructor.

BISC 2208. Genetics Laboratory. 1 Credit.
Study of genetic principles and genetic and molecular techniques in Drosophila and E. coli. Benchwork and comparative genomics using bioinformatics. Students may register concurrently in GEN 2207. Permission of the instructor may substitute for the prerequisites. Prerequisites: BISC 1115 and BISC 1125; and BISC 1116 and BISC 1126; and GEN 2207.

BISC 2213. Biology of Cancer. 3 Credits.

BISC 2214. Developmental Biology. 3 Credits.
The molecular processes and cellular phenomena that result in the formation of organized tissues and functional organisms; formation of early body plan, cell type determination, organogenesis, morphogenesis, stem cells, cloning, and issues in human development. Prerequisites: BISC 1115 and BISC 1125; and BISC 1116 and BISC 1126.

BISC 2215. Genome Editing Laboratory. 1 Credit.
Practical training in genome editing in, from sequence design to molecular biology, generation of edited animals, and phenotypic analysis. Students undertake individual research projects involving CRISPR. In addition to the stated prerequisites, prior or concurrent enrollment in BISC 2214 or permission of instructor is required. Laboratory fee. Prerequisites: BISC 1115 and 1125; BISC 1116 and BISC 1126.

BISC 2220. Developmental Neurobiology. 3 Credits.
The evolution of life on earth; the value of other organisms, their role in our world, and how humans can cause harm to this infrastructure. Students work with a community partner to perform activities that assist the partner while reinforcing course concepts.

BISC 2220. Developmental Neurobiology. 3 Credits.
The evolution of life on earth; the value of other organisms, their role in our world, and how humans can cause harm to this infrastructure. Students work with a community partner to perform activities that assist the partner while reinforcing course concepts.

BISC 2220. Developmental Neurobiology. 3 Credits.
The evolution of life on earth; the value of other organisms, their role in our world, and how humans can cause harm to this infrastructure. Students work with a community partner to perform activities that assist the partner while reinforcing course concepts.
BISC 2305. Plant Biology. 3 Credits.
Plant metabolism and molecular biology: photosynthesis, nitrogen metabolism, membrane transport, mechanisms of hormone action, protein targeting, biotechnology, and current research topics. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126; CHEM 1111 and CHEM 1112; or permission of the instructor.

BISC 2318. Histology. 4 Credits.
Lecture (2 hours), laboratory (4 hours). Introduction to microscopical anatomy of normal tissues and organs with emphasis on the interrelationship of structure and function. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126; or permission of the instructor.

BISC 2320. Neural Circuits and Behavior. 3 Credits.
The cellular and molecular properties of neural circuits that form the basis of behavior. Circuit properties and behaviors across a variety of invertebrate and vertebrate taxa. Individual neuronal units, the organizational principles and emergent properties of neural circuits, and how these neuronal ensembles influence behavior.

BISC 2322. Human Physiology. 3 Credits.
Introduction to the function of organ systems of the human body. Prerequisites: CHEM 1111, CHEM 1112, BISC 1115 and 1125; and BISC 1116 and BISC 1126 or permission of the instructor.

BISC 2330. Invertebrate Zoology. 4 Credits.
Lecture (2 hours), laboratory (4 hours). General survey of invertebrate animals, including classification, morphology, physiology, embryology, and evolutionary relationships among phyla. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126; or permission of the instructor.

BISC 2331. Insect Biology. 3 Credits.
Overview of the class Insecta, focusing on insect external and internal morphology, classification, ecology/behavior, collection, and specimen preparation. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126.

BISC 2332. Comparative Vertebrate Anatomy. 4 Credits.
Evolution and comparative morphology of phylum Chordata, stressing recent forms. Laboratory fee. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126; or permission of the instructor.

BISC 2333. Evolution and Extinction of Dinosaurs. 3 Credits.
The 165-million-year history of dinosaurs; different groups and their evolution, end-Cretaceous extinction event, the origin of birds, and the biology of the group. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126; or GEOL 1001 and GEOL 1002 or GEOL 1002 and GEOL 1005. (Same as GEOL 2333).

BISC 2334W. Integrative Biology of Fishes. 3 Credits.
An introduction to concepts in anatomy, biomechanics, physiology, developmental biology, biomechanics and hydrodynamics, adaptive radiation, evolutionary biology, and ecology using fish as model organisms. Significant fish groups are covered, but emphasis is on exploring broader topics in which fish have figured prominently in research.

BISC 2335. Insect Biology Lab. 1 Credit.
An overview of insects, with an emphasis on ecology, behavior, economic importance, and the key adaptations that characterize the evolution of this diverse group. This lab will teach basic internal and external anatomy, field collection methods, insect identification, and discussion of the primary literature. Laboratory fee. Prerequisite: BISC 2331.

BISC 2337. Introductory Microbiology. 4 Credits.
Lecture (2 hours), laboratory (4 hours). Survey of the major groups of microorganisms with emphasis on structure, physiology, ecology, pathogenesis, and biotechnology. Antibiotic resistance and emerging diseases. Prerequisites: CHEM 1111, CHEM 1112, BISC 1115 and 1125; and BISC 1116 and BISC 1126; or permission of instructor.

BISC 2337W. Introductory Microbiology. 4 Credits.
Lecture (2 hours), laboratory (4 hours). Survey of the major groups of microorganisms with emphasis on structure, physiology, ecology, pathogenesis, and biotechnology. Antibiotic resistance and emerging diseases. Includes a significant engagement in writing as a form of critical inquiry and scholarly expression to satisfy the WID requirement. Laboratory fee. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126; and CHEM 1111 and CHEM 1112 or permission of the instructor.

BISC 2339. Parasitology. 4 Credits.
Introduction to animal parasitology; survey of parasitic types from protozoa through arthropods. Laboratory fee. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126; or permission of the instructor.

BISC 2340. Organic Evolution. 3 Credits.
Synthetic theory of organic evolution, including population biology, speciation, adaptation, macroevolution, systematics, biogeography, and the geologic record. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126; or permission of instructor.

BISC 2341. History of Life. 3 Credits.
Overview of life through time; the origin of life, evolution of major groups of organisms, and important methodologies used in paleontology. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126; or permission of the instructor. (Same as GEOL 2151).

BISC 2342. Animal Behavior. 3 Credits.
An evolutionary approach to the study of animal behavior, emphasizing behavioral ecology and sociobiology. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126; or permission of the instructor.
BISC 2453. Animal Behavior Lab. 1 Credit.
Methods used in the study of animal behavior; observation, basic statistical analysis, and experimental design; review and evaluation research materials. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126. Recommended background: Prior or concurrent enrollment in BISC 2452.

BISC 2454. General Ecology. 3 Credits.
The core concepts of the field of ecology across different hierarchical scales of ecological systems. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126; or permission of the instructor.

BISC 2456. General Ecology Laboratory. 1 Credit.
Practical exercises and field-trips are used to explore the core concepts of the field of ecology across different hierarchical scales of ecological systems. Laboratory fee. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126.

BISC 2467. Marine Biology. 3 Credits.
Study of relationships between organisms and physical, chemical, and biological factors of the marine environment. Consideration of the open ocean and coastal ecosystems and human influences on them. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126; or permission of the instructor.

BISC 2580. Biotechnology. 3 Credits.
Genetic engineering of bacteria, plants, and animals, including humans. Applications of modern biotechnology, especially in the field of medical biotechnology, such as gene therapy, xenotransplantation, and the Human Genome Project. Regulation, prospects, and social impact of biotechnology. Prerequisites: CHEM 2151, CHEM 2152, CHEM 2153, CHEM 2154, BISC 1115 and 1125; and BISC 1116 and BISC 1126. Recommended background: BISC 2202 or BISC 2207.

BISC 2580W. Biotechnology. 3 Credits.
Genetic engineering of bacteria, plants, and animals, including humans. Applications of modern biotechnology, especially in the field of medical biotechnology, such as gene therapy, xenotransplantation, and the Human Genome Project. Regulation, prospects, and social impact of biotechnology. Includes a significant engagement in writing as a form of critical inquiry and scholarly expression to satisfy the WID requirement. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126, CHEM 1111, CHEM 1112, and BISC 2207 or BISC 2202 or permission of instructor.

BISC 2583. Biology of Proteins. 3 Credits.
About half of the proteins in the human genome have unknown functions. Are some related to cancers, muscle degeneration, infectious disease? How can evolutionary relationships among proteins from other organisms help us discover functions of unknown proteins? Laboratory fee. Prerequisite: AP or IB Biology or Chemistry.

BISC 2584. Introduction to Bioinformatics. 3 Credits.
The use of computational techniques in molecular biology, genetics, and evolution; techniques and software for database searching, sequence alignment, gene finding, phylogenetics, genomics, and proteomics. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126. (Same as CSCI 3571).

BISC 3122. Human Physiology. 3 Credits.
Introduction to the function of organ systems of the body. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126, CHEM 1111, CHEM 1112, and BISC 2207 or BISC 2202 or permission of instructor.

BISC 3208. Molecular Biology Laboratory. 1 Credit.
Techniques in molecular biology; traditional and modern methods in recombinant DNA technology, gene and protein characterization methods. Prerequisites: BISC 1115 and BISC 1125; BISC 1116 and BISC 1126; CHEM 1111, and CHEM 1112.

BISC 3209. Molecular Biology. 3 Credits.
Theories and concepts in molecular biology; biosynthesis and structure of DNA, RNA, and proteins, relationships among gene function and expression; transcription and translation; regulation of gene expression in prokaryotes and eukaryotes; theory of traditional and modern methods in recombinant DNA technology, gene and protein characterization methods. Prerequisites: BISC 1115 and BISC 1125; BISC 1116 and BISC 1126; CHEM 1111; and CHEM 1112.
BISC 3210. Nanobiotechnology. 3 Credits.
Theory and application of nanotechnologies in biology and medicine. Strategies for studying the organization, function, and complexity of biological systems at nanometer scale. Several areas of research are covered, including high-resolution cellular and molecular imaging, spectroscopy, and optical tweezers. Prerequisites: BISC 2202 or BISC 3261 or permission of instructor and BISC 1115 and 1125; and BISC 1116 and BISC 1126; or permission of the instructor.

BISC 3211. Nanobiotechnology Laboratory. 1 Credit.
Modern instrumental techniques for analyzing biological structures and processes at the nanometer level; combining nano- and conventional techniques to answer scientific questions. Students formulate, design, and implement a research project. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 3210.

BISC 3212. Immunology. 3 Credits.
Introduction to mammalian immunology covering the progression of immune responses from initial pathogen contact to immune memory. Applied topics include autoimmunity, transplantation, and the effects of HIV on the immune system. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126, BISC 2202, CHEM 2151 and CHEM 2153. Recommended background: BISC 2207 or BISC 2322.

BISC 3261. Introductory Medical Biochemistry. 4 Credits.
Introduction to structures of biological macromolecules, enzyme catalysis, cellular bioenergetics, and metabolism. Same as BIOC 3261. Prerequisite: CHEM 2151–CHEM 2152. Credit toward the degree cannot be earned for this course and for CHEM 3165.

BISC 3262. Biochemistry Laboratory. 2 Credits.
Study of common experimental techniques used in life science laboratories to separate and characterize biological macromolecules. Laboratory fee. Prerequisites: BISC 3261, BISC 1115 and 1125; and BISC 1116 and BISC 1126.

BISC 3263. Special Topics in Biochemistry. 2 Credits.
In-depth discussion of current biochemically relevant topics, including cancer and HIV chemotherapy, immune response, photosynthesis, signal transduction, hormone regulation, and nutrition. Topics vary by semester. May be repeated for credits provided topic differs. Consult the Schedule of Classes for more details. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126; and BISC 3261 or permission of the instructor. (Same as BIOC 3263).

BISC 3320. Human Neurobiology. 3 Credits.
Introduction to the function of the human nervous system, gross and microscopic structure, and neurophysiology of the brain, spinal cord, and nerves; alterations caused by disease or injury. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126; and BISC 2202 or BISC 3261.

BISC 3450. Evolutionary Medicine. 3 Credits.
The application of evolutionary principles, including natural selection, adaptation, phylogenetics, and evolutionary constraints, to understanding health, disease, and the biology of disease-causing organisms (viruses, bacteria, and parasites). How natural selection and phylogeny influence pathogen-host interactions, human genetics, immunology, development, cancer, and diseases of senescence. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126. Recommended background: BISC 2207 and BISC 2450.

BISC 3450W. Evolutionary Medicine. 3 Credits.
The application of evolutionary principles, including natural selection, adaptation, phylogenetics, and evolutionary constraints, to understanding health, disease, and the biology of disease-causing organisms (viruses, bacteria, and parasites). How natural selection and phylogeny influence pathogen-host interactions, human genetics, immunology, development, cancer, and diseases of senescence. Includes a significant engagement in writing as a form of critical inquiry and scholarly expression to satisfy the WID requirement. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126. Recommended background: BISC 2207 and BISC 2450. (Same as BISC 3450).

BISC 3454. Marine Ecology. 3 Credits.
Abiotic and biotic factors in marine environments in general and ecological theory behind how they shape communities, biomes, and patterns in marine biodiversity; major marine habitats and the important organisms, physical environment, and major interactions in each; threats to marine environments and effective conservation strategies.

BISC 3455. Marine Ecology Laboratory. 1 Credit.
Study of marine ecology through experiential learning and an introduction to ecological research in the marine environment and using large datasets collected by marine scientists. By visiting marine ecosystems, students will also learn about marine resource use and conservation strategies in the coastal zone.

BISC 3458. Plant Comparative Structure and Function. 3 Credits.
Fundamental principles of how organisms are built, investigating trade-offs and coordination in design, how variation in structure influences physiological function in different ecological settings, and how relations among plants shape structure and function and responses to ecological gradients. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126; or permission of instructor.

BISC 3459. Field Biology. 4 Credits.
Overview of the approaches and techniques used by contemporary field biologists for cataloging, quantifying, and comparing patterns of biodiversity across plants, animals, and fungi at multiple spatial and temporal scales. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126. Recommended background: BISC 2454.
BISC 3460. Conservation Biology. 3 Credits.
Theory and practice of conserving biological diversity. Ecological patterns of biodiversity, biology of small populations, and conservation case studies. Use of ecological modeling software to explore various topics. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126; and BISC 2454; or permission of the instructor.

BISC 3461. Plant-Animal Interactions. 3 Credits.
Review of the major ecological and evolutionary interactions that occur between plants and animals in natural and managed ecosystems. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126; or permission of the instructor. Recommended background: BISC 2450 or BISC 2454.

BISC 3462. Plant-Animal Interactions Laboratory. 1 Credit.
Field and laboratory study of temperate interactions between plants and animals. Group projects focus on original data collection, analysis, and interpretation. The stated prerequisites may be taken as corequisites; consult the instructor. Laboratory fee. Prerequisites: BISC 1115 and BISC 1125; BISC 1116 and BISC 1126; and BISC 3461.

BISC 3463. Ecological and Evolutionary Genetics. 3 Credits.
An analysis of the ecological and genetic basis of evolutionary change. Topics include the organization and maintenance of genetic variation within and among natural populations, the genetic basis of complex traits, molecular ecology analyses, and genotype by environment interactions. Prerequisites: BISC 2450 or permission of instructor and BISC 1115 and 1125, and BISC 1116 and BISC 1126; except by permission of the instructor.

BISC 3464. Ecology and Evolution of Societies. 3 Credits.
Study of broadly important ecological and evolutionary patterns and processes exemplified by organisms that have undergone the major evolutionary transition to living in societies. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126. Recommended background: BISC 2454 or BISC 2454W.

BISC 3565. Plant Ecology and Evolution. 3 Credits.
How plants are built; how this construction shapes their physiological function in different ecological settings; how plants are related revolutionarily, and how these relations shape their structure, function, and responses to their environment. Prior completion of BISC 2454 is recommended. Prerequisites: BISC 1115, BISC 1116, BISC 1125 and BISC 1126; or permission of the instructor.

BISC 4132. Advanced Cellular-Molecular Biology. 3 Credits.
An advanced cell biology course with emphasis on biochemistry and molecular biology; illustrations are drawn from different organisms and human biology. Oral and written analysis of research literature. For upper-level undergraduates and beginning graduate students. Restricted to Instructor approval required. Recommended background: Six credits in the Cellular and Molecular category.

BISC 4171. Undergraduate Research. 1-12 Credits.
Admission by permission of the staff member concerned. May be repeated for credit. Laboratory fee.

BISC 4171W. Undergraduate Research. 1-12 Credits.
Admission by permission of the staff member concerned. May be repeated for credit. Laboratory fee. Prerequisites: Chem 2152 and BISC 1115 and 1125; and BISC 1116 and BISC 1126 except by permission of the instructor; 16 credit hours in biological science courses.

BISC 4172. Independent Study. 1-3 Credits.
Prescribed reading list and consultations with staff advisor culminating in a written report and/or examination. Prerequisites: BISC 1115 and 1125; and BISC 1116 and BISC 1126 and permission of the instructor.

BISC 4173. Independent Study-Developmental Biology. 2 Credits.
BISC 4174. Independent Study-Organismic Biology. 2 Credits.
BISC 4175. Independent Study-Genetic/Evolutionary Biology. 2 Credits.
BISC 4176. Independent Study-Environmental Bio. 2 Credits.

BISC 4180. Undergraduate Research Seminar. 1 Credit.
BISC 4219. Host-Microbe Interactions. 3 Credits.
Overview of the molecular, genetic, cellular and physiological basis of symbiotic and pathogenic interactions between plants, invertebrate and vertebrate animals with various microbial organisms including bacteria, fungi, viruses as well prokaryotic and eukaryotic parasites. Prerequisites: BISC 2202 and BISC 2337.

BISC 6101. Responsible Research. 1 Credit.
This course provides an introduction to the ethical, social, and legal foundations of scientific practice. It is intended to provide a forum for graduate students and postdocs to discuss almost every aspect of the academic life of a scientist, except specific disciplinary topics that are treated in regular courses. Ensuring ethical conduct is an essential part of basic, applied, and clinical research, especially in the context of competitive, collaborative, and international settings so common nowadays. Students will be exposed to case studies typifying complex social, ethical, and legal dilemmas that may arise in the conduct of research.
BISC 6102. Scientific Presentation. 1 Credit.
This course allows students to perfect their Scientific Presentation skills. In this course, students will present, in front of peers and faculty, their current research projects and plans for future work leading towards a complete thesis or dissertation. Student presentations will be designed to address a general audience of biologists, containing sufficient background information to provide perspective insights into the fundamental questions being asked, and at the same time providing enough detail on technical issues and analytical procedures to allow evaluation of potential outcomes. The Class will provide a friendly forum for students to collect feedback and comments, to discuss project design, content, and general significance of their research.

BISC 6132. Advanced Cellular-Molecular Biology. 3 Credits.
Advanced cellular biology for upper-level undergraduates and beginning graduate students; emphasis on biochemistry and molecular biology; organisms and human biology with emphasis on oral and written analysis of research literature. Permission of the instructor is required. Restricted to students who have completed 16 credits of 2000-4000 level biology courses, including 6 credits in the cell and molecular category. Prerequisites: Graduate standing or undergraduates with 16 credits of 2000-4000 level biology courses, including 6 credits in the Cell and Molecular category and permission of instructor. Recommended background: 4-6 upper level biology courses, including 2 courses in the Cell and Molecular area.

BISC 6205. Current Topics in Cell Smith, Donaldson, Eleftherianos, Jeremic 1-2 Credits.
May be repeated for credit. Prerequisite: BISC 2202 or BISC 3209.

BISC 6206. Current Topics in Evolutionary Ecology. 1-2 Credits.
May be repeated for credit.

BISC 6207. Seminar: Current Topics in Systematic Biology. 1-2 Credits.
Topics vary by semester. See the Schedule of Classes for more details. May be repeated for credit provided the topic differs. Prerequisite: BISC 6210.

BISC 6210. Methods of Study of Evolution. 4 Credits.
A rigorous and up-to-date treatment of the theory and methods of systematics, including phylogenetic inference and its applications in evolutionary biology. Laboratory fee. Prerequisite: BISC 2450.

BISC 6211. Biogeography/Coevolution. 4 Credits.
Survey of methods, techniques, and theory in biogeography. Geological and paleontological aspects of biogeography; large-scale biogeographic patterns; speciation and phylogeography. Prerequisite: BISC 2451 or BISC 2452 or permission of the instructor.

BISC 6213. Descriptive Systematics: Documenting Biodiversity. 3 Credits.
Study of those aspects of systematic biology concerned with description and inventory of biodiversity. Prerequisite: BISC 6210.

BISC 6214. The Phylogenetic Basis of Comparative Biology. 3 Credits.
The use of phylogenetic hypotheses to study questions in evolutionary biology and ecology. Prerequisite: BISC 6210; STAT 1127.

BISC 6215. Vertebrate Phylogeny. 4 Credits.
A survey of vertebrate diversity, emphasizing evolutionary relationships and adaptations of the major groups. Prerequisite: BISC 2450; BISC 2332 recommended.

BISC 6216. Morphological Systematics. 3 Credits.
Methods of studying organismal morphology as a means of inferring phylogeny, emphasizing the concept of homology. Prerequisite: BISC 6210.

BISC 6218. Innate Immunity. 3 Credits.
Discussion of innate immune systems in a wide variety of organisms; from sponges to vertebrates plus higher plants. Prerequisite: BISC 3212; recommended BISC 2202, BISC 2207, BISC 3209, BISC 2330.

BISC 6219. Host-Microbe Interactions. 3 Credits.
Overview of the molecular, genetic, cellular, and physiological basis of symbiotic and pathogenic interactions between plants, invertebrate, and vertebrate animals with various microbial organisms including bacteria, fungi, viruses as well prokaryotic and eukaryotic parasites. Prerequisites: BISC 2202 and BISC 2337.

BISC 6224. Molecular Evolution. 3 Credits.

BISC 6225. Molecular Phylogenetics. 4 Credits.
Review of molecular phylogenetic methods including data recovery, alignment, weighting, character optimization, and phylogenetic inference methods. Prerequisite: BISC 2207, BISC 2450, and BISC 6210.

BISC 6227. Seminar: Genetics. 3 Credits.
Review of selected topics in genetics, with emphasis on current literature; topics of special interest to participants encouraged. May be repeated for credit. Prerequisite: BISC 2207.

BISC 6228. Population Genetics. 3 Credits.
Origin, maintenance, and possible significance of genetic variation in populations. Selection, genetic drift, and population structure are emphasized. Both theoretical and applied aspects of population genetics are discussed. Same as FORS 6247. Prerequisite: BISC 2207.

BISC 6230. Human Genetics. 3 Credits.
Genetic mechanisms of transmission and expression of human traits, with emphasis on biochemical and cytogenetic aspects. Prerequisite: BISC 2207; previous course work in cell biology or cell biochemistry strongly recommended.
BISC 6243. Seminar: Ecology. 3 Credits.
In-depth study of selected topics, including reports on original publications. May be repeated for credit. Prerequisite: BISC 2454.

BISC 6249. Seminar: Developmental Biology. 3 Credits.
Discussion and reports on recent research on the endocrinological, genetic, and biochemical aspects of animal development. Prerequisite: a course in developmental biology or cell biology.

BISC 6251. Evolutionary Developmental Biology. 3 Credits.
Developmental mechanisms involved in the morphological changes that occur during the course of evolution.

BISC 6252. Seminar: Neurobiology. 3 Credits.
Study of current publications in functional neurobiology. May be repeated for credit with instructor’s permission.

BISC 6274. Gene Regulation and Genetic Engineering. 3 Credits.
The control of gene expression as illustrated by several prokaryotic and eukaryotic model systems: discussions of recombinant DNA techniques. Prerequisite: BISC 2207.

BISC 6275. Introduction to Recombinant DNA Techniques. 3 Credits.
Lecture, 1 hour; laboratory, 4 hours. Basic techniques of genetic manipulation: cloning of genes, transformation of bacteria, PCR procedures, DNA sequencing, and other techniques. Prerequisite: BISC 2202 or BISC 2207 or BISC 2337 and permission of instructor. Laboratory fee.

BISC 6295. Research. 1-12 Credits.
Investigation of special problems. May be repeated for credit.

BISC 6998. Thesis Research. 3 Credits.

BISC 6999. Thesis Research. 3 Credits.

BISC 8998. Advanced Reading and Research. 1-12 Credits.
Limited to students preparing for the Doctor of Philosophy general examination. May be repeated for credit.

BISC 8999. Dissertation Research. 3-12 Credits.
Limited to Doctor of Philosophy candidates. May be repeated for credit.